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Necessary and sufficient conditions are given for the belonging of an n tuple of complex four-vectors to 
the extended tube. 

I 

T HE analyticity properties of vacuum expectation 
values of field operatorsl- 6 are related to the 

geometric properties of the so-called extended tube Rn', 
which is defined as follows. An n tuple z, ... ,z of 

1 n 

complex four-vectors belongs to Rn' if and only if 
there exists a proper complex Lorentz transformation 
A such that, for p= 1, .. " n, the imaginary parts of 
Az lie in the interior of the forward light cone. Jost1 has 
given a simple characterization of the real points of 
Rn'. It is the purpose of this paper to give a characteriza
tion which applied to all points of Rn', brings out the 
role of convexity properties, and exploits the symmetry 
between complex four-vectors and complex 2 X 2 
matrices. 

Every complex four-vector determines, in a natural 
way, an element of an eight-dimensional real euclidean 
space E(8). Thus the complex four-vectors Zl' = xl'+iyl' 
and Cl' = aj. +ibl' correspond to the vectors 

(1) 
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and 
(2) 

respectively. 
Together with an arbitrary CEE(8) given by (2), 

we can consider the vectors 

H(O) = (b o, bl, b2, b3; ao, al, a2, a3) 

H(1) = (bl, bo, - a3, a2; al, ao, b3, - b2) 

H(2) = (b2, a3, bo, - al; a2, - b3, ao, bl) 

H(3) = (b3, - a2, al, bo; a3, b2, - bl, ao). 

It is easy to verify that 

H(i)·H(k)= iCi 28,k (i, k=l, 2, 3) 

H(O). H(i) = 2[aoa+bob+ (aXbn. 

(3) 

(4) 

Here the scalar product and the norms are taken in 
the euclidean space E(8). 

We define now the cone associated to C as the set of 
all vectors ZEE(8) such that 

3 

Z·H(O)-{ I: (Z·H(i»)2}i>O. 
i=l 

A cone associated to a vector (2) which satisfies 

al'al'-bl'bl'>O 

al'bI'=O 

(5) 

(6) 

(that is, cl'c!'=:co2- c· c>O), will be called a distinguished 
cone. We shall prove the following result: 

An n tuple {z, .. " z} belongs to the extended tube if and 
1 n 
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only if the convex body spanned by the real eight-dimen
sional 7'ectors Z, " " Z lies in the interior of some 

1 ft 

distinguished cone. 

The proof is given in Sec. II. 

II 

Given two complex four-vectors c,. and z,., consider 
the real number f(c,z) defined by 

and 
f(c,z)=vo-ivi (7) 

vo=Im(coZo+c· z) 

v= Im(ccz+zec+i(cXz». 

(8) 

(9) 

It is easy to see that the function f(c,z) has the 
following convexity properties; if 0::; X::; 1, then 

](Xc'+ (l-X)c",z) ~ X!(c',z) + (I-X)f(c",z) (10) 

f(c,Xz'+ (I-X)z") ~ X!(c,z') + (I-X)f(c,z"). (11) 

Furthermore, for any real positive number 'Y 

f('Yc,z) = f(c,'Yz) ='Yf(c,z). (12) 

We shall now prove the following lemma: 

An n tuple {z, "', z} belongs to the extended tube 
1 • 

if and only if there exists a complex four-vector Cl' such 
that 

(13) 

can be written as 

and (17) as 

wo=coZo+c·z 

w=coz+zoc+i(cxz) 

C,.c" = 1. 

(19) 

(20) 

(21) 

The assertion of the lemma now follows from the 
definition of the function f(c,z), with Vo= Imwo, and 
v=lmw. 

If the inequalities (14) are satisfied, then by (11), 
f(c,s) >0 in the closed convex body spanned by z, .. " Z. 

1 • 

Conversely, if f(c,z) >0 in that body, then obviously 
f(c,z) >0 (p= 1, ... n). 

• 
If we introduce now (instead of the complex four-

vectors Cl' and Zl') the real eight-vectors (1) and (2), then 
Eqs. (8) and (9) become 

vo=Z·HCO) 

vi=Z·HCil (i= 1,2,3), 

(22) 

(23) 

where HCO) and HCil are given by (3). Consequently, 

3 

f(c,z)=Z·H(O)-{ L (Z·HUl)2}! (24) 
i=l 

and the statement of the theorem follows from the 
lemma, the definition of distinguished cones, and the 
Eq. (12). The inequality (11), together with Eq. (12), 
also shows that the sets which we called cones are 

f(c,z) > 0 (p=1,···,n). (14) indeed convex cones. 
p 

Proof: Instead of the four vectors Cl' and Zl" we may 
consider the matrices 

(co+ca C1-iC2) 

c= cl+ic2 
(15) 

Co-Ca 

(zo+za ZI-iZ2). 
z= zl+iz

2 

(16) 
Zo-Za 

It is known (see e.g., Jost1) that {z, "', z} belongs to 
1 • 

the extended tube if and only if there exists a matrix c 
such that 

det c= 1, (17) 

and that the complex four-vectors WI" corresponding to 
the matrices • 

W=cz (p= 1, .. " n) 
p p (18) 

have their imaginary parts in the interior of the 
forward light-cone. Because of (15) and (16), Eqs. (18) 

III 

We shall now illustrate the thorem just proved by a 
few simple examples. 

Consider first the distinguished cone associated to a 
vector (2) with ao= 1, ai= b;= bo= O. If the convex 
body spanned by Z, ... ,Z lies within this particular 

1 • 

distinguished cone, then the n tuple {z, ... , z} belongs 
1 n 

to the so-called forward tube. Indeed, for any Z given 
by (1), Z·HCO)=yoZ·HCi)=Yi; so (5) becomes just the 
condition that the imaginary parts of all the z- s lie 
in the forward light-cone. 

Next, it is easy to verify that if z,.z" ~ 0, then the 
corresponding Z cannot belong to any distinguished 
cone. 

Finally, if XI' is real and space-like, then Z = (Xl'; 0) 
lies in the distinguished cone associated with C= (0; X,.). 
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The pair distribution function for a hard sphere Bose system has been calculated by using a method in 
which the hard sphere potential is replaced by the so-called pseudo-potential. The problem is carried 
through using the quasi-particle formalism of Bogoliubov. In this calculation one considers a system of 
bosons interacting via the pseudo-potential which can be regarded as a weak interaction when the system 
is very dilute. The Hamiltonian of the system is diagonalized by means of a canonical transformation which 
has the effect of separating the energy into two parts, one of which is the ground state energy and the other 
corresponds to an ideal Bose gas composed of "elementary excitations" or "quasi-particles." This formalism 
is applied to the calculation of the pair distribution function. This quantity is calculated by averaging over 
a grand canonical ensemble constructed with the total number of elementary excitations. A result which is 
seen to be valid both for the condensed and gaseous phases of the system and also for any distance r be
tween the particles is obtained. 

A discussion of the difference between these results and the ones obtained in a previous calculation and a 
comparison between both results and the experimental ones is also given. 

INTRODUCTION 

I N a previous calculation,1.2 we have obtained the 
pair distribution function (pdf) for a hard sphere 

Bose system to first order in a/X by using the Binary 
Collision Expansion (BeE) method of Yang and Lee. 
The parameter a is the radius of the spheres and X is 
the thermal wavelength, h(2-rrmkT)-t. As we have 
mentioned in I, the result has the disadvantage of being 
applicable only for the "gaseous phase" and for large 
interparticle distances. The first limitation is a result 
of the appearance of functions g~(z,s) and g~(z) which 
for any value of ()" converge only if I z I < 1. The second 
arises from the fact that one of the terms in the expan
sion for the pdf is inversely proportional to r, the dis
tance between any two particles. 

In this paper we wish to calculate the pdf for the 
hard sphere Bose system to the same order in a/A, so 
that the result is sufficiently general to be valid for the 
condensed and gaseous phases and at any value of the 
interparticle separation. We shall use for this purpose 
the formalism of Bogoliubov3 in his theory of the super
fluidity of He II. We shall apply it to the case of a 
dilute hard sphere Bose system interacting through the 
pseudo-potential which we regard as a weak interaction. 

The first section of this paper will be devoted to a 
discussion of Bogoliubov's method. In the following 
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versity of Maryland in partial fulfillment of the requirements for 
the degree of Doctor of Philosophy. 

t On leave of absence from the Instituto Nacional de la In
vestigaci6n Cientifica, Mexico. 

1 L. S. Garcia-Colin and J. Peretti, J. Math. Phys 1, 97 
(1960). 

2 Hereafter we shall refer to this paper as I. 
3 N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947); N. N. 

Bogoliubov, V. V. Tolrnachev, and D. V. Shirkov, A Ne:w Method 
in the Theory of Superconductivity (Consultants Bureau, New 
York, 1959), Chap. I. 

87 

section we shall evaluate the pair correlation function 
for any weakly interacting system. The calculation will 
be performed by averaging the matrix elements of the 
corresponding operator over the grand canonical en
semble constructed by the total number of "quasi
particles" or elementary excitations. In Sec. 3, the re
sulting formula will be applied to the ideal gas and the 
hard sphere gas, to order a/X, in the gaseous phase. In 
Sec. 4, we shall compare the two results (i.e., the one 
obtained in I and the one obtained in the present paper), 
with the experimental results for liquid helium at 
4.2°K. Finally, in Sec. 5 some comments will be made 
concerning the connection between the two methods 
and their validity. 

1. METHOD OF BOGOLIUBOV 

We consider a system of N weakly interacting bosons 
whose Hamiltonian, in the language of second quantiza
tion, is given by 

P 

1 +- L V(PI-Pl')aPl*ap2*ap2'aPl', (1) 
20 (Pl+P2=Pl'+P2') 

where p is the particle momentum, v(p) is the Fourier 
transform of the interaction potential for a pair of 
particles (this quantity is assumed to be proportional 
to some small parameter), 0 is the volume of the system 
and ap * and ap are the boson creation and annihilation 
operators. We shall, for the time being, choose our 
system of units such that ;,,= 2m= 1. 

Bogoliubov3 has shown that in the presence of a 
weak interaction, one can assume that the overwhelm
ing majority of the particles will be in the particle 
ground state, i.e., that there exists a condensate in the 
system. If this condensate contains No particles, where 
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N o»1, the expression 

is small compared with ao and ao* themselves since 
No=ao*ao. We, therefore, may treat these operators as 
c numbers, neglecting their noncommutativity. Then, 
on introducing the operators, 

bp=ao*No-tap bp*=aoNo-1ap*, (2) 

we may rewrite Eq. (1) as follows: 

H=Ho+Hint 

p 

N 02 No 
Hint=-v(O)+- L v(p) 

Q 2Q p;tO 

(3) 

X (b p *b_p *+bpb_p+ 2bp *bp), 

where we have neglected terms of an order larger than 
second in bp * and bp because they are of order Not and 1. 
This corresponds to the solution of the equation of mo
tion of the system by using a field operator of the type 

'I'=Q-!ao+(I, 

where (I is a small quantity, and where all those terms 
involving second and higher orders of () have been 
neglected. 

We now introduce two operators ~p and ~p * by means 
of the transformation 

bp= up~p+vp~_p * 

b_p= up~_p+vp~p*, 
(4) 

where Up and Vp are real c numbers, functions of p, such 
that they satisfy the relations 

Up2-Vp2= 1; u_p=up; v_p=vp. 

It is then easy to show that the fs satisfy the same com
mutation relations as the a's, and thus they are Bose 
amplitudes. Under the transformation defined by Eq. 
(4), Eq. (3) reduces t04 

where 

H=Hl+L w(p)~p*~p 

N 02 

Hl=-v(O)+t L [w(p)-E(p)-J(p)], 
Q p;tO 

E(p)=p2 
Nov(p) 

J(p)=-
Q 

w(p) = [E(p)2+2E(p)J(p)]i 

provided that Up and Vp satisfy the relation 

2upvp[E(p)+J(p)]+ (u p2+vl)J(p) =0. 

(5) 

(6) 

(7) 

Thus the total energy of the system is equal to the 
ground state energy HI and the energy of the· "ele
mentary excitations" or "quasi-particles," described by 
the operators ~ and ~*. As it is shown in Eq. (5), these 
elementary excitations, represented by the term 
Lp,",o w(p)~p*~p form a perfect Bose gas. 

The explicit dependence on the momentum p of the 
c numbers Up and Vp appearing in Eq. (4) is obtained 
by solving Eq. (7). This is most easily done by intro
ducing an angle tpp through the relations 

(8) 

One then finds that 

cosh2tpp= E(p)+J(p )/w(p) 
sinh2tpp= -[J(p)/w(p)] (9) 

so that tpp is a negative number, which approaches zero 
as J(p) goes to zero. We now define a positive number 
a (p) by means of the expression, 

-a(p)=tanhtpp= (vp/u p). 

From Eqs. (9) and (10) it is easily found that 

a(p) = J(p )-I[E(p )+J(p )-w(p)] 
and that 

(10) 

(11) 

which are the desired relations. One might mention 
that for a hard sphere Bose gas, where v(p)=87ra, "a" 
being the diameter of the spheres, Eq. (11) reduces to 
the result given by Lee, Huang, and Yang.5 

2. PAIR DISTRIBUTION FUNCTION IN 
BOGOLIUBOV'S FORMALISM 

After using the results sketched in the previous sec
tion, we proceed to evaluate the pair distribution func
tion for a system of weakly interacting bosons. 

In the language of second quantization the pair dis
tribution function operator is given by 

p(2) (rl' r2) = '1'* (rl)'I'* (r2)'I' (r2)'I' (rl), 

where the field operator 'I' is given by 

'I'(r) =Q-t(ao+ L ape ip . r), 
pr'o 

(13) 

(14) 

where we have explicitly written the term for zero 
momentum. 

By introducing a new field operator tp(r), given by 

tp(r)=po!+Q-! L bpe ip . r, 
p;tO 

(15) 

where Po is the particle density in the ground state 

4 The reasons leading to such transformations are given in 6 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 
footnote 3. (1957). 
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N o/Q, we can write Eq. (13) as follows: 

p(2) (r1,r2) = 11'* (r1) 11'* (r2) 11'( r2) 11'( r1). 

The substitution of Eq. (4) into Eq. (15) yields 

r,o(r)= po1+U(r)+ V*(r), 
where 

and 

U(r)=Q-! L upeipor~p 
Pr'O 

VCr) =Q-! L vpe-ip.r~p. 
pr'Q 

(16) 

(17) 

(18a) 

(18b) 

The operator r,o*(r) is given by the hermitian conjugate 
of Eq. (17). Substitution of Eq. (17) and its complex 
conjugate into Eq. (16) would give the pair distribution 
operator in terms of the quasi-particle creation and 
annihilation operators. As it will be seen later, we are 
interested in calculating only the diagonal elements of 
this operator in the quasi-particle representation. It is 

then easy to see that those terms having pol and po! as 
coefficients give a zero contribution to such diagonal 
terms, and for this reason we shall ignore them. The 
remaining terms giving a nonzero contribution are 

[p(2) (r1,r2) ]diag 
= [p02+PO{ U*(r1) V (r2)+ V (r1) U*(r2)+ U(r2) V*(r1) 

+ V*(r2)U (r1)+ U*(r1) U (r1)+ U*(r1)U (r2) 
+U*(r2)U(r1)+ U*(r2)U(r2)+ V (r1)V*(r1) 
+ V(r2)V*(r1)+ V(r1)V*(r2)+ V(r2)V*(r2)} 
+ U*(r1)U*(r2)U(r2)U(r1)+ U*(r1) V(r2) 
X U(r2) V*(r1)+ U*(r1) V (r2) V*(r2)U(r1) 
+ V(r1)U*(r2)U(r2)V*(r1)+ V(r1)U*(r2) 
XV*(r2)U(r1)+ V(r1)V(r2) V*(r2) V*(r1)]diag. (19) 

The evaluation of Eq. (19) is long but straightfor
ward. The first term contributes po2 since it is a constant; 
the term having po as a coefficient yields after some 
manipulations, the following result : 

Finally, the independent term yields the following expression: 

~2=Q-2 L [up2uq2e-ip.r+iq.r +upvpuqVq( e-ip.r-iq .r+e-ip .r+iq .r+e+ip .r-iq .r+eip.r+iq .r)+vp2vleip .r-iq .r] 
p,q 

Pr'q 

X~p*~p~q*~q+Q-2 L [up2Uq2+2up2vi+vp2Vq2+up2vb-ip.r-iq.r+viuq2eiP.r+iq.r]~p*~p~q*~q 
p,q 

+Q-2 L [upvpuqVq( e-ip .r-iq·r +eip .r-iq.r +e-ip.r+iq .r+eip.r+iq .r)+vp2vq2( eip.r-iq .r+eiq .r-ip.r) ]~p *~p 
p,q 

pr'q 

+Q-2 L [uivq2e-iP·r-iq.r+2up2Vq2+2vp2vi+vp2uq2eiP.r+iq.r]~p *~p+Q-2 L (up4+2vp4)~p *~p 
p,q pr'Q 

+Q-2 L (upvpuqvqeip.r-iq.r+vp2vq2eip.r-iq.r)+Q-2 L vp2vl+2D-2 L vp4, (21) 
p,q p,q pr'Q 

Pr'q 

where in Eqs. (20) and (21), r= r1- r2. 

The diagonal part of the matrix elements of the pair 
distribution function are, therefore, given by the 
expression 

(22) 

where ~1 and ~2 are given by Eqs. (20) and (21), 
respectively. 

We must now find the thermal average of the operator 
given by Eq. (22) which for brevity we shall denote by 
p(2). Such an average is proportional to the trace of the 
operator p(2)e-f3H , where H is the Hamiltonian of the 
system given by Eq. (5). The calculation of such an 
average is performed by averaging over an appropriate 
grand canonical ensemble. 

First we notice that the number of elementary excita
tions is not arbitrary but it is related to the total 

number of quasi-particles N and the number of par
ticles in the ground state No through the relation 

(23) 

where np is the occupation number of the "quasi
particle" state with momentum p. 

We now define a quantity :a:, which plays the role 
of the grand partition function, by means of the equation 

00 

Z=rNo L rN-NoZN, 
N~No 

(24) 

where r is a parameter which must be determined later 
on, and is not equal to the fugacity of the system be-
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cause N is not the total number of particles. Since6 

ZN= Tre-fJH (25) 

and the canonical average of p(2) is given by 

(p(2)=ZN-1Trp(2)e- fJH , (26) 

we find from Eqs. (24) and (26) that the grand canonical 
average of p(2) is given by 

00 

«p(2))=tNoZ-1 L t N- NoTrp(2)e-fJH , (27) 
N-No 

00 

where «p(2)) denotes the grand canonical average of p(2). 
Let 

t=e-fJIA 

and let I np,N) be an eigenstate of the Hamiltonian H 
such that Eq. (23) is satisfied. Then, by using the fact 
that 

co ZrNo = L L e-fJ [2:'np,,(p)+IA2:'np] 
N=No (n.1 

we can write Eq. (27) alternatively as 

L L (np,Nlp(2) Inp,N) exp{ -~[L' npW(p)+!J. L' np]} 
N=No {npl 

(28) 

L L exp{ -~[L' npW(p)+!J. L' n p]} 
N=N. {n.1 

where in these last two expressions, L{n.1 denotes a 
summation over all possible sets of values of the np's 
satisfying Eq. (23) and L' denotes a summation over 
all possible momenta, except p=O. Equation (28) shows 
explicitly the use of the diagonal elements of the oper
ator p(2), which we have previously calculated. 

Now, the terms that appear in p(2) are either inde
pendent of ~p and ~p *, they contain these operators in 
the combination ~p *~p, or they contain them in the form 
~p *~p~q *~q. Thus, noticing that the double summations 
appearing in Eq. (28) may be replaced by a single sum
mation over all possible sets of values {n p } without any 
restriction, we find that this equation gives rise to the 
three following results: 

(a) The terms in p(2) independent of ~p and ~p * 
remain the same. 

(b) Terms of the type 

yield 

where 

L A(q)~q*~q 
q;o!O 

te-fJ.,(q) 
«nq» 

1-te-fJ .,(q) 

is the grand canonical average of the occupation 
number nq of the particles having momentum q. 

(c) Terms of the type 

L L M(p,q)~p*~p~q*~q 
q;o!() p;o!() 

yield, neglecting terms of the order 0-1, 

L L M(p,q)«np»«ng». 
g;o!O p;o!O 

On combining these results with Eq. (22) and noticing 
that the density of the system is related to the ground 

6 The symbol Tr in Eq. (25) must be understood as that acting 
on the operator ,--{IN when the Hamiltonian H represents the 
system in a state having precisely N quasi-particles. 

state particle density by the relation 

po= p(l- 10), 
where 

10= (N'-No)/N' 

(29) 

(30) 

is the fraction of the average number of particles out
side the ground state, N' being the average of the total 
number particles, and keeping only terms up to order 
(N')-\ we find that the pair correlation function aver
aged over the grand canonical ensemble is given by7 

«D(r») 
= p-2«(P(2) (r»)= (1-10)2+[1 +F(r)]2+[l +G(r)]2 

+[1+F1(r)]2+[1+H(r)]2+[1+2G1(r)]2 
+[1+H(0)]2+[1+F(0)]2+[1+F1(0)]2 
-8-2jo[F(0)+F1(O)+H(O)+F(r)+G(r) 
+F1(r)+H(r)+2G1(r)]+2F(O)[H(O)+F1(O)] 
+2F1(r)[F(r)+H(r)]+2H(O)F1(O) 

+4G(r)G1(r)+H(r)F(r)+I(r)F1(r), (31) 
where 
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The expressions for F(O), FI(O) and H(O) are the values 
for F(r), FI(r) and H(r) when r=O. The a's are related 
to the coeff Up and Vp of the canonical transformation 
defined in Eq. (4) through Eq. (12). 

It is worth remarking that if we only restrict our
selves to the average of the operator p(2) over the ground 
state, that is, we consider in Eq. (22) only those terms 
which are independent of ~p and ~p * we get the same 
result as the one derived by Lee, Huang, and Yang,6 
using the pair theory. In fact, in this case our parameter 
fo, the fraction of particles outside the ground state is 
equal to the parameter f introduced by these authors, 

a2 (p) 
f=F(O) = (N')-l L: fo. 

p,.«) l-a2(p) 

Hence we find FI(r)=Gl(r)=H(r)=O and Eq. (31) 
reduces too,8 

«D(r») = [1+G(r)]2+[1+F(r)]2 
-1- 2f[G(r)+F(r)]. (32) 

Equation (31) is the sought for expression for the 
pair distribution function; it is valid for all distances l' 
and at all temperatures. We shall now proceed to apply 
it to the case of an ideal Bose gas and then to the hard 
sphere Bose gas. 

3. IDEAL AND HARD SPHERE BOSE SYSTEMS 

The pair correlation function for an ideal Bose system 
at any temperature T is obtained from Eq. (31) in the 
following way: Since J(p)=O we see from Eqs. (10) or 
(11), that a(p)=O, and hence 

F(r) = F l(r) = G(r) = GI(r) = O. 

If we keep the terms of order (N')-t, which we neglected 
before, Eq. (31) yields 

{(D(r») = (1- fo)2+2(1- fo)[H(r)+H(O)] 

In this case, r is equal to z, the fugacity of the system, 
because the diagonal part of the interaction as well as 

8 It must be pointed out that the last term of Lee, Huang, and 
Yang's expression contains a factor 4f, instead of 2f, resulting 
from an error in their calculation. 

the off diagonal part of it, are identically zero. We then 
find that 

((D(r») = 1 +[~g!(z, ~l)]2 +~gf(Z' ~t) 
p}..3 }.. p}..3 }.. 

--=-gi(Z)gt(Z, ~t) __ I_[gt(Z)-g!(Z)]. (33) 
p2}..6 }.. p}..3N' 

By using the value of fo given in Eq. (30) and H(O) we 
find 

fo= (l/p}..3)gt(z) = (N'-No)/N'. 

If we introduce a parameter a by means of the relation, 

we see that Eq. (33) can be written as 

1 [{ n 00 }2 {(D(r»)=I+- N o+- L: n-!e-na-(xln) 
N'2 }..3 n=1 

which is the pair correlation function for an ideal Bose
Einstein system in precisely the form recorded by 
London.9 In Eq. (34) x=1I'r2}..-2. 

For the gaseous phase, (i.e., at temperatures above 
the condensation point) No is of the order of (N')-l so 
that fo can be taken to be equal to one. Hence, we find 
that Eq. (33) reduces to 

which agrees with the result obtained in I by the binary 
collision expansion method. 

Next, we want to apply our results to the case of a 
system of bosons interacting via a hard sphere poten
tial, restricting ourselves only to the gaseous phase. 
The problem of evaluating the equilibrium properties 
of a system of this kind has already been thoroughly 
studied by Lee and Yang,IO using the pair theory. 
Since this method is completely equivalentll to the 
quasi-particle method, we shall be able to use some of 
the results obtained by these authors. 

The calculation of the pair correlation function is 
easily performed. For a hard sphere system of bosons 
we know that JI(p) = 167ra, so from Eq. (6) we get 

J(p)= 1611'apo, 

which is expressed in terms of p, with the aid of Eq. 
(29) as 

J(p)=I67rap(l- fo), 

where a is the radius of the spheres. 

9 F. London, J. Chern. Phys. 11,203 (1943). 
10 T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958), 
11 J. Peretti, Phys. Fluids 3, 68 (1960). 
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On the other hand, let us introduce Lee and Yang's 
parameter 1/,12 which is defined by 

1/= No/N', 
so that 

J(p)= 167raP1/. 

As they have shown, 1/=0 for the gaseous phase, thus 
J(p)=O and as before a(p)=O, and /0= 1. 

Therefore, Eq. (31) reduces in this case to the follow
ing expression: 

«D(r») = H2(0)+H2(r) =0(1/N'), 

where S" is a parameter which has to be determined. 
If we use the values found before for H(O) and H(r) 

with S" replacing z, and use the fact that to first order in 
a/}.., (6), 

(36) 

a result which follows from the condition that /0= 1, 
we find that 

«D(r») = 1+L~i!(S"'~!) r (37) 

The relation between S" and ZlO.13 to first order in a/}.. 
it is found to be 

S"=z(1- (8a/}..)g!(z», 

which substituted into Eq. (37) gives 

(38) 

(39) 

This is the pair correlation function for a hard sphere 
Bose gas up to terms of the order of a/X. This result 
does not agree completely with the one obtained in I 
by the BCE method. The discrepancy between the two 
results and a relation between them, if any, will be 
discussed in Sec. 5. 

4. COMPARISON WITH THE EXPERIMENT 

In this section, we want to compare the values for the 
pair distribution function, calculated in I by the BCE 
method and in this paper by the pseudo-potential 
method, with the experimental values for liquid He4 

given by Goldstein and Reekie.14 The comparison will 
be done at a temperature of 4.2°K and a fixed density, 

12 This parameter is called ~ in their paper. 
18 Apparently, r would play the role of the fugacity in the 

~aseous phase since the off diagonal part of the interaction J (p) 
IS proportional to the equilibrium value of 1/, which is zero in 
this case, but the diagonal part of the interaction, which is inde
pendent of 1/ and included in HI, in (5), contains a term propor
tional to the square of the total number of particles and therefore 
contributes to lnz by the amount 8a/Ag,(r).11 

14 L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955). 

namely, that of liquid He4 at this temperature under 
the vapor pressure. The selection of this temperature is 
to assure that we are well above the condensation tem
perature so that the system is in the "gaseous" phase, 
i.e., the fugacity is such that I z I < 1. 

One must point out at this stage that the relation 
between the pair distribution function defined by 
Goldstein and Reekie, n(r,T), and our definition, 
p(2) (r,T) is such that the following relation holds true, 

n(r,T) = pD(r,T), (40) 

where p is the density at the temperature T. 
Let us consider first the pair correlation function 

calculated from the pseudo-potential method expressed 
in terms of S" by Eq. (37). The parameter S" as we know, 
is related to z through Eq. (38). We shall see presently 
that within the approximation considered in this calcu
lation, Eq. (40) is just the pair correlation function 
for the ideal gas at the same temperature and density. 
In fact, consider an ideal Bose gas under the same con
ditions, i.e., with a density equal to that of liquid He4 

at 4.2°K. We know that in this case D(r)16 is given by 

(41) 

where Zo is the fugacity for the ideal gas. The connec
tion between Zo and p is given by 

(42) 

This equation can be written in an alternative way if 
we introduce a parameter, To, called the "condensation 
temperature" for the ideal gas. If To is given by 

h
2 

( N )~ 
To= 27rmk 2.612Q ' 

(43) 

then Eq. (42) reads 

(To/T)!= 1/2.612gt(zo). (44) 

On the other hand, we know that for the hard sphere 
Bose gas, to first order in a/X, the density of the system 
is determined by Eq. (36). Thus it follows that 

S"=zo, 
and hence 

zo= z[l- (8a/X)g!(z)]. (45) 

This means that the value for D(r) calculated from 
Eq. (37) with a value of S" determined from Eq. (36) 
is the same as the one calculated from Eq. (39) with a 
value of z determined from Eq. (45). Thus, we see since 
S"= Zo, that to first order in a/X the pair distribution 
function obtained from the pseudo-potential method is 
the same for an ideal gas under the same conditions of 
temperature and density. 

The evaluation of D(r) is straightforward once S" has 

16 From now on, we shall omit the grand canonical ensemble 
average symbol « ». 
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TABLE r." 

r D(r) n(r,4.2°K) r D(r) n(r,4.2°K) 

0 2 3.768 5 1.0154 1.91 
0.5 1.9715 3.714 6 1.0055 1.89 
1 1.8057 3.402 7 1.002 1.886 
1.5 1.5935 3.002 8 1.00087 1.885 
2 1.3969 2.63 9 1.0004 1.8844 
3 1.110 2.09 10 1.00016 1.884 
4 1.040 1.96 00 1 1.884 

a We give the values for D (r) calculated from Eq. (37) and the corre
sponding values for n(r.4.2°K) calculated from Eq. (40) with p =1.884 XI0" 
atoms/ec r is given in A and n(V.T) in units of 10" atoms/ceo 

been determined. If we use Eqs. (42) and (44) we get 
an equation for r, namely 

At T=4.2°K the density of liquidHe4 isO.12518 g/cm3 

and with these values one finds that T 0= 2.842°K. Thus, 
we get that 

'" .In 
L: -=1.48. 
n=! n l 

(46) 

The functions ga(Z) have been studied and tabulated 
for some values of z by Truesdell,16 By using the 
formula!6 

'" (lnz)n 
gJ(z)=r(-t)(-lnz)!+L: r(!-n)--, (47) 

n=O n! 

where r(s-n)!7 is the Riemann zeta function, and an 
interpolation method we found that the value of r 
satisfying Eq. (46) is equal to 0.8672. Thus, with r 
expressed in A it is found that Eq. (37) may be written 
as 

D(r) = 1 +0.4731 

[ 
'" (0.8672)n ( r

2)J2 
X L: exp -0.17335- . 

n=! n l n 
(48) 

The evaluation of Eq. (48) was performed by direct 
summation for values of r up to 3 A and for r> 3 A; the 
value of the series was calculated by using Poisson's 
summation formula. That is, for r> 3 A we have that 

(7r)t +00 

g!(.I,s)=- L: exp[ -2s( -lnr+27rim)t], (49) 

s -'" where 
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TABLE 1r." 

r D(r) n(r,4.2°K) D(r) n(r,4.2°K) 

0 -00 -00 5 1.249 2.35 
0.5 -9.11 -17.16 6 1.113 2.097 
1 0.1068 0.2012 7 1.052 1.98 
1.5 2.614 4.925 8 1.0246 1.93 
2 2.953 5.56 9 1.011 1.906 
3 2.136 4.02 10 1.0056 1.894 
4 1.538 2.89 00 1 1.884 

• We give the values for D(r) calculated from Eq. (51) and the corre
sponding values for n(r.4.2°K) obtained from Eq. (40) with p =1.884 XI022 
atoms/cc r is given in A and n(r.T) in units of 10" atoms/ceo 

the result for the pair correlation function obtained in 
1. We recall that the result is given by 

where s is the same variable defined in Eq. (50). 
From the expression for the grand potential q ob

tained by the BeE method to first order in a/X,I8 it is 
possible to show that the relation between p and z is 
given by 

p=x-{ gJ(z)- :a gl(Z)gt(z) J+0(a2/x2). 

. However, this equation is the same as Eg. (36) if z and 
r are related by Eg. (45). It is then convenient to ex
press Eg. (51) in terms of r and make use of the results 
obtained in the preceding case. We find that Eg. (51) 
reads 

D(r)= 1 + [2.gJ (r,s)J
2 

pX3 

(52) 

where in Eg. (52) the first two terms are precisely the 
value of D(r) obtained from the preceding method. 
Since g!(r,s) is already known, it remains only to 
evaluate the series gt(.I,s). Again this was done by 
direct summation for values of r up to 3 A and by 
Poisson's summation formula for r>3 A. For this case 
we have 

+'" 
(50) gi(.I,s) = (7r)t L: (-lnr+ 27rim)-t 

The results are given in Table I, where n(r,4.2°K) 
calculated with the use of Eq. (40) is expressed in units 
of 1022 atoms/cc. 

We shall calculate the values of n(r,4.2°K) by using 

16 C. Truesdell, Ann. Math. 46, 144 (1945). 
17 The symbol r(s-n) should not be confused with the pa

rameter r defined by Eq. (24). 

m=-'" 

Xexp[ -2s(-lnr+27rim)!], (53) 

where s is given in Eg. (50). The results are given in 
Table II using the same units as in Table 1. 

18 K. Huang, T. D. Lee, and C. N. Yang, "Stevens conference on 
the many body problem" (1957); also, T. D. Lee and C. N. Yang, 
Phys. Rev. 105, 1119 (1957). 
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2 a 4 9 lOr 

l-c:o 
FIG. 1. The curves for the pdf of a hard sphere Bose gas ob

tained by the pseudo-potential and BCE methods, to first order 
in "a," are given at a temperature of 4.2°K. n(Y,4.2°K) is given 
in units of 1()22 atoms/cc and r is given in A. 

In Fig. 1 we have plotted the results obtained by the 
two methods, the two curves being drawn to the same 
scale. The comparison with the experimental results 
cannot be accomplished for those values of r smaller 
than 2.5 A since the correlation functions for helium 
obtained from the experimental x-ray scattering in
tensity data have not been verified for this range.I4 

The comparison is thus performed in the range 2.5 ~r 
~ 10, where, according to Goldstein and Reekie, the 
experimentally obtained correlation functions should 
be good approximations to the actual ones for helium. 
The results are shown in Fig. 2 where the values for the 
experimental pdf were taken from the paper by Gold
stein and Reekie14 for r ~ 6 A and from the paper of 
Reekie and Beaumont19 for r<6 A. The agreement is 
good for large values of r (i.e., r>6 A), but it is poor 
for small values of r. However, this was to be expected 
since in the BeE method we have calculated the con
tribution to the pdf only to the first order in a. With 
this approximation we have thus neglected terms of the 
order of a2, as, ... and so on, which appear when we 
take into account not only collisions between more 
than two particles, but also the contribution to scatter
ing from higher angular momenta. These contributions 
involve greater values of the relative momenta between 
the particles and, therefore, they have a greater effect 
on the pdf at short distances if we are dealing with a 
system at a finite temperature. Besides, the pdf func
tion would be modified for small values of r if there 
were an attractive potential outside the hard core 
considered in our case. 

On the other hand, the pseudo-potential method 
yields a result which to first order in a reduces to the 

19 J. Reekie and C. F. A. Beaumont, Proc. Phys. Soc. (London) 
A228, 363 (1955). 

ideal gas case. This is because in the gaseous phase the 
momentum of the particles is not small and the pseudo
potential is equivalent to a hard core only for small 
relative momenta. At "high" temperatures, the mo
menta are large enough to allow the particles to over
come the repulsive action of the pseudo-potential, 
which is seen to become softer and softer as the tem
perature increases. Furthermore, the thermodynamical 
model that we have used here, following Yang and Lee,lO 
has besides the above shortcoming, another defect 
which shall be discussed in Sec. 5. 

S. DISCUSSION OF THE RESULTS 

In this last section we wish to discuss the two results 
obtained for the pdf by the BeE and the pseudo
potential methods. However, our considerations will be 
more extensive than those required for the explanation 
of the discrepancies between these results. We shall 
obtain a very precise relation between the two methods 
which, to first order in a/X, is able to tell us what we 
must expect when any equilibrium property of the 
system is evaluated through their use. 

We recall that in the BeE method the general N 
particle U functions are expressed in terms of the 
binary kernel U 2 which in turn may be expressed in 
terms of the binary kernel U 2 which in turn may be 
expressed as a power series in the particle radius "a" 
for the case of hard spheres. Such expansion is graphi
cally represented in Fig. 1 of I and may also be expressed 
as follows, 

(54) 

Since our calculation has been performed to the first 
order in "a," we have kept in this series only the term 
represented by U2 (1). 

On the other hand, let us calculate the effective inter
action between two particles in momentum space if 
their interaction potential in coordinate space is the 
pseudo-potential interaction. By using the integral equa-

2. 

2.3 

~2.1 
oN 
V 
~1.9 
r:: 

1.7 

1.5
0 2 4 • 8 10 r 

FIG. 2. The results shown in Fig. 1 are compared with the ex
perimental values given by Goldstein and Reekieu and Reekie 
and Beaumont19 for helium at 4.2°K. 
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tion for the propagator K (r',(3'; r,(3) in r space, i.e., 

K(r',(3'; r,(3) 

=Ko(r',{3'; r,(3)-i K(r',(3'; r",{3")V(r") 

x K o(r"{3" ; r,(3)d{3"d3Nr", (55) 

where r= (rl," ',rN) and Eqs. 1-(26),20 we find that 

K(k',{3' j k,(3) 

= K o(k',(3' ; k,(3)~ i K(k',{3'; p'(3")Hr (p,p') 

XKo(p,(3"; k,(3)tJ3N pd3N p'd(3", (56) 

where k= (kl,' .. ,kN) and 

For the case that N=2 and V(r) is given by 

V(r)= (16?rah2/2m)a(r). 

Equation (57) reduces to 

H I(k1,k2 ; kl ,k2) = (161rah2) (2mn}-1 
X (21r)-3a(kl'+k2'-kl-k2), (58) 

which is the desired effective interaction. 
Suppose, then, that we now form the series analogous 

to the one in Eq. (54) for the binary kernel with a 
pseudo-potential interaction, which we schematically 
represent by Fig. (3a). It is then easy to show that the 
diagram represented in Fig. (3b) and which corresponds 
to U2(1) inEq. (54) when calculated with the interaction 
given by Eq. (58) gives precisely the same result ob
tained from the BeE method to first order in "a." So 
far, then, the results obtained by the two methods 
ought to be the same. 

However, in the pseudo-potential method the pa
rameter '11 defined to be N 0/ N' has been shown by Lee 
and YanglO to be equal to zero in the gaseous phase. 
This means, according to their expression for the 
Hamiltonian of the system,21 that the only contribution 

H 
(a) ( b) 

FIG. 3. (a) Schematic representation of the pseudo-potential in
teraction. (b) Diagram of the order "a" appearing in the power 
series expansion in "a" of the binary kernel with a pseudo-poten
tial interaction. 

!ll The notation 1-( ) means Eq. ( ) of I. 
21 See Eq. (14) of footnote 10. 

}------<~ }------{ 
1a !~ 1a !13 

(a) (b) 

FIG. 4. (a) Direct diagram corresponding to one diagonal ele
ment of V'. (b) Exchange diagram corresponding to a diagonal 
element of V'. 

besides the kinetic energy term, comes from the di
agonal elements of the interaction potential V'. But 
since 

it is easily seen that these diagonal elements belong to 
two diagrams only. The first one is that for which 
ka= kv, kfl= k~ corresponding to a zero momentum 
transfer. This is the so-called direct diagram. The 
second one is the exchange diagram for which ka= k~ 
and kfl= kv. This diagram may be considered to have 
zero momentum transfer if we define this quantity to 
be the difference in momentum between the left (or 
right) incoming particle in the final and initial states 
disregarding the exchange effect. This is shown in Figs. 
(4a) and (4b). Thus, what we shall say from now on 
will apply to either case. 

From the foregoing discussion we see that in the 
gaseous phase we must restrict ourselves to those dia
grams in which the momentum transfer is zero. If we 
add this restriction to the effective interaction between 
two particles in momentum space given by Eq. (58), 
we must multiply this equation by a Kronecker delta 
ak,'-k,. We obtain then 

We reach then the last step in our discussion. In order 
to compare the two results for the pdf we must have a 
value for the classical binary kernel U 2 for the inter
action given by Eq. (59). Since we know that 

U2(kl',k2',(3; kl,k2,0)=K(kl'kl,(3; kl,k2,0) 
-Ko(kl'(3j kl,0)Ko(k2'(3; k2,0) (60) 

and the free particle propagators are known [d. Eq. 
(1-28)], we have just to solve Eq. (56) with the value 
of HI given by Eq. (59), One finds that 
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and 

U2(k/,k2',,B; kl ,k2,O) 

=iJ(kI ' - k1)iJ(k2'-k2) {exp[ _:: (kI2+k22+ l:a) ] 

-exp[ -:: (M+k 22)]}. (61) 

In order to avoid confusion, from now on we shall call 
this result Upp and the one obtained by the BCE 
method U BCE. This latter one is found to be given by 

where K, K', k and k' are defined in terms of kl, k2, kl', 
and kz' by means of Eq. (1-33). The momentum transfer 
is given by p= k I ' - ki = k' - k (since K= K'), and thus 
we see that 

2a ,Bh2 

limUBcE= ----a(K'- K) exp[ -.Bh2/2m(kI2+k22)J. 
p-->O r 2m 

Furthermore, since we have taken p= 0 we can mUltiply 
this equation by a Kronecker's delta of p, i.e., by 

iJp=iJk'_k=8~12-liJ(k'- k) 

and get finally that 

167ra ,Bh2 

limUBcE= -----a(k1'- k1)iJ(k2'-k2) 
p-->O 12 2m 

(62) 

If we expand Eq. (61) in a powers series in "a," we see 
that the term of order a is just the same as Eq. (62). 
Thus, we have shown the following relation 

limUBcE=Upp, 
p-->O 

(63) 

which is valid up to terms of order a. This equation 
implies that if we perform the calculation of the pdf 

for our system using the pseudo-potential method, to 
first order in a, we are considering only those diagrams 
for which the momentum transfer vanishes. Physically, 
it means that the collisions between the particles are 
elastic, and thus the gas behaves as an ideal one. This 
is the reason why the pdf given in Eq. (37) reduces to 
the formula of London. 

One may also conclude that if any equilibrium prop
erty of a hard sphere Bose system is calculated, up to 
terms of order a, using the two methods, the results will 
in general be different. Any relation between them is 
to be considered as merely fortuitous. This is illustrated 
by the following example. 

The grand potential for a hard sphere Bose gas has 
been evaluated by using the BCE method18 ,22 yielding 
the following result: 

g-lq=X-a[gt(z)- (4a/X) (g}(z))2J+O(a2/X2). (64) 

This calculation may be repeated using U pp, which is 
seen to differ from the free particle propagator only by 
the factor 

f= - (16"'a/12) (h2,B/2m). 

If the calculation is performed assuming that the cor
rect potential is the sum of the direct and exchange 
parts of Upp, we get precisely Eq. (64). Thus, two dif
ferent methods lead to the same result, but as we have 
pointed out before, this is merely fortuitous. 

It is perhaps noteworthy to emphasize that for the 
particular case of the pdf of a hard sphere Bose system 
the BCE yields a correct answer, independently of the 
order in a to which the calculation is considered. 
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The pair distribution function for a quantum Bose gas is expressed as a power series in terms of the fu
gacity, the coefficients of which are temperature dependent. For the hard sphere case, these coefficients have 
been evaluated to the first order in a/A, (a being the scattering length and A the thermal wavelength) by 
using torons with two fixed points, or alternatively U cluster functions. The result gives the first order cor
rection to the ideal gas formula of London and Placzek introduced by the interactions between the particles. 

1. INTRODUCTION 

SINCE the evaluation of the pair distribution func
tion for an ideal Bose gas by London and Placzek, I 

very little seems to have been done in this connection, 
particularly when interactions between particles are 
introduced. The main reason for this has been the lack 
of an adequate method treating the many-body problem 
in quantum statistical mechanics. Recently, however, 
two such methods have appeared, the binary collision 
expansion of Yang and Lee2 and the method of "torons" 
developed by Montroll and Ward.3 These methods pro
vide powerful tools for the calculation of thermodynamic 
properties of interacting systems in equilibrium. 

In this paper we calculate the pair distribution func
tion for an interacting Bose system using the binary 
collision-expansion method. We shall apply this method 
to the hard sphere gas and we shall evaluate the coeffi
cients of the expansion in a power series of the fugacity 
to the first order in a/A (a being the scattering length 
and A the thermal wavelength). The result will give the 
first order corrections in "a" to the ideal gas, which are 
caused by the repulsive core. 

2. FORMULATION OF THE PROBLEM 

We consider a system of N particles of mass m whose 
Hamiltonian is 

(1) 

where the potential energy V is of the form, 

VCrl,' ·,rN)=I: V(lri-rJI), (2) 
i>i 
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1 F. London, J. Chern. Phys. 11,203 (1943); G. Placzek, Proc. 
Second Berkeley Symposium on Mathematics, Statistics and Prob
ability, p. 58l. 

2 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959). 
3 E. W. MontroU and J. C. Ward, Phys. Fluids 1, 55 (1958). 

The propagator for the system is then defined by 

KN(r',r)= I: r;on(r)<Pn(r')e-~En, (3) 

where {<Pn} is a complete orthonormal set of eigen
functions of the Hamiltonian operator H obtained from 
Eq. (1), {3= (kT)-I, r= (rI,' .. ,rN), En are the eigen
values corresponding to the set {<Pn} and the summation 
is to be carried out over all symmetric or antisymmetric 
wave functions depending on whether the particles 
satisfy Bose Einstein or Fermi Dirac statistics. 

The quantum mechanical distribution function for h 
particles is defined by the following relation: 

where ZN is the partition function of the system and 
W N(q) is a function which is related to the propagator 
KN of the system by 

W N(q) (r/, .. ,rN'; rI, .. ,rN) 

=N!KN(rI' .. ·rN'; ri" ·rN), (5) 

If one defines a quantity WN,O(c]) (rl'· . ·rN'; rl," ',rN) 
for free particles as follows: 

W N,O(cll (r/· .. rN'; rl' .. rN) 
=KI (rI',rI)KI(r2',r2)' .. KI(rN',rN), (6) 

where KI(r/,ri) is just the free particle propagator for 
an interval of temperatures of length jrt, given by 

and 
(8) 

then, W N(q) is also given by the relations 

97 

WN(q)(r',r)= I: (±1)IP,'IPr,WN(cl)(r',r), (9) 
(Pr'] 

where I: (Pr '] is a summation over all permutation of the 
final coordinates, the (+) sign corresponding to bosons 
and the (-) sign to fermions, and where W N(cI) (r',r) 
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f-l+H·+~'+·· .. · 
o bob 0 b 

FIG. 1. The binary kernel or total binary 
interaction, U 2{B) (a',b' ; a,b). 

is defined by the following~expansion: 

WNCcl) (r',r) 

00 £2: 11;=11 =L (_1)n+1 ;-1 WN,OCol) (r',rl)V(rl) 
n=1 0 

XW N, OCol) (rl,r2) ... V(rn-I) W N, OCol) (rn-r,r) 

Xd{3I" ·d{3Nd3r l •• ·d3rn- l. (10) 

Equation (9) is a very important one. It represents the 
fact that in calculating the propagator for a system of 
N quantum interacting particles one may neglect sta
tistics at all intermediate stages. The statistics of the 
final state is obtained by simply permuting over all the 
final coordinates of the particles and summing over 
all these permutations. This equation has been empha
sized by Yang and Lee.2 

Let us denote by W NCB) the function W N Cq) for a 
system of N interacting bosons. The pair distribution 
functions of the system is given by 

PN (2
) (rl,r2) 1 f ... f 

ZN(N-2) t 

WNCB)(rl" ·rN; rl,' ·rN)d3r3·· ·d3rN. (11) 

The evaluation of the corresponding quantity 
p(2)(rl,r2) for a grand canonical ensemble, as a power 
series in z, the fugacity of the system, was performed 
by Fujita, Isihara, and Montro1l4 by using the method 
of "torons." An alternate derivation has been pre
sented by the authors" using a method which is very 
similar to the Mayer-Kahn-Uhlenbeck cluster integral 
expansion of the equation of state for imperfect gases. 
The result is the following: 

(12) 

where p is the thermal average of the particle density 
of the system and F(2) is a function given by 

F(2)(rl,r2)=L zP+2A p (2) (rl,r2), (13) 
p9) 

r r r + H' r + r H' + ~~r + 0(t)2 
123 123 123 123 

FiG. 2. Diagrammatic representation for the function 
Wa(ol) obtained by Yang and Lee. 

• S. Fujita, A. lsihara, and E. W. Montroll, Bull. classe sci. 
A~ad. roy. Belg. 44, 1006 (1958). 

'L. Colin and J. Peretti, Compt. Rend. 248, 1625 (1959). 

where A p(2) (r1>r2) is a generalized cluster integral 

A p (2) (r1>r2)= :tf'" f 
u p+2(B) (rl,r2,tl,' .. tp )d3tl' •• d3t p • (14) 

The function U P+2CB) appearing in Eq. (14) is the 
short hand notation for the diagonal part of the 
generalized cluster function U for p+ 2 particles!as 
defined by Yang and Lee,2 namely 

U P+2CB) (rl,r2,t1• •• tp; rlr2,t l · .. tp). 

The problem of evaluating the pair distribution 
function for an interacting system composed of bosons 
reduces to the evaluation of the function F(2) defined in 
Eq. (13) and to this task we shall devote the following 
sections. 

3. DIAGRAMMATIC ANALYSIS OF THE 
FUNCTION UN(rl" 'fN) 

The first step in the calculation of F(2)(rt,r2) is to 
find a way of computing the generalized cluster integral 

11 r + 1:~i i + I H + t~d + hhi + f:tj 
123 123 123 123 1 i 3 1 ~ 3 

121213132321231312 

+ H + W I + H>:l + f;i:,1 + N\I + Hr:1 + 
123123123123123123 

+ 6 more diagram. with interaction lin.. bet" •• n 2 and 3 + 6 

more ""h inltroctlcn Ii ... betw •• n 1 ano 3 + O(fl 
FIG. 3. Diagrammatic form of the function Wa{B) after 

statistics have been considered in the final states. 

A p (2)(rl,r2) given in Eq. (14). The binary collision ex
pansion method2 provides a tool for such a computation 
and we shall obtain a general expression U NCB) (rl ... rN) 
~n terms of the total binary interaction, which is 
schematically represented by the diagram in Fig. 1. 
In this figure, the diagram with n interaction lines cor
responds to the (n+ 1)th term in the expansion, Eq. 
(10), for N=2 (the two body problem). 

Although the method that we shall describe is quite 
general, we are interested only in applying it to the 
calculation of the pair distribution function for a system 
of hard sphere bosons to the order of a/X at most. 
Therefore, we shall only keep those terms which are of 
this order. 

We first express the function WNCeI)(rN) in terms of 
the classical U functions in the same way as is done in 
Mayer's theory of the imperfect gas. Then, from Eq. 
(9) we construct W NCB) for the boson case which in 
turn yields an expression for U NCB). This gives us the 
function U NCB) for a boson system in terms of the 
classical U's. The next step is to obtain U 3CeD , U 4coD,' •• 

in terms of U2(cI) and this has been done by Yang and 
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Lee.2 Finally, since we know that U2(e!) is of the order 
a/X, U a(e!) of the order a2/X2 and so on, we omit all 
those diagrams containing U2(e!) two or more times; in 
principle, we are left with a series of diagrams, all of 
order a/X at most, and this is the required expression 
for U N(B). 

To be more explicit, let us consider the case N=3. 
From the results obtained by Yang and Lee we have in 
Fig. 2 the expression for W a(e!). 

According to Eq. (10), Wa(B) is obtained from Wa(e!) 

by adding together all possible permutations of the 
prime coordinates. In this way, we obtain 24 diagrams 
of order a/X at most. We then identify each primed co
ordinate with the corresponding unprimed one, i.e., 
r/ = rl, l2' = l2, la' = la. The aforementioned permuta
tions, then, give lise to permutations among the un
primed coordinates and these are represented by dotted 
lines. The result is shown in Fig. 3. 

2 1 3 L f.J 3 1 2 llJ 
+P41+~+M4+p.fi 
123123123123 

FIG. 4. Diagrammatic representation of the functions 
UN(B), N=1, 2, 3 obtained from W3(B). 

From the equations relating the U(B) functions with 
the WeB) functions6 in the Bose case, we find that the 
U N(B) functions for N = 1, 2, 3 are the ones shown in 
Fig. 4 where U(B)(ll,la) and U2(B)(l2,ra) have the same 
representation as U2(B) (rl,r2)' The structure of each 
of the U N(B) functions is clear from this example and 
we can, therefore, conclude that for any integer N we 
can represent this function as a sum of diagrams. This 
is shown in Fig. 5 where the first summation is over 
all possible distinct cycles in which all N particles are 
involved (connected diagrams). The second sum is over 
all possible diagrams containing two disjoint cycles, 
the interaction being between two particles in this 
cycle. The third sum is over all possible diagrams 
which contain one cycle, the interaction being between 
two particles in this cycle. Using this expression for 
UN(B) we shall proceed in the following sections to eval
uate.the generalized cluster integral A p(2) (rl,l2)' 

6 These equations are explicitly written in Eq. (1-6) of foot
note 2. 

UN"'(!i"--'1)=r [,!1/i-~k !t] + 2: N)~\H/"!lAd 
+ I Ptf t44, .. ..lkl 

FIG. S. The function U N(B) (rl," . rN) for any integer N, is 
represented as a sum of three terms, each one being a sum over 
different kind of diagrams. 

4. CALCULATION OF THE FUNCTION F(21(rl,r2) 
FOR A HARD SPHERE BOSE GAS 

A. Contribution of the First Kind of Diagrams 

The first term appearing in Fig. 5 will give that con
tribution to the function F(2) (rl,r2) corresponding to 
the ideal gas. The diagrams that are contained in such 
term will be called of the first kind. The evaluation of 
the generalized cluster integral ·A p(2) (rr,l2) for this 
kind of diagrams is readily done, but we must remember 
that the coordinates of particles 1 and 2 remain con
stant in the integration. 

Let us consider a typical first kind diagram which is 
shown in Fig. 6a. In this diagram, there are nl particles 
between particles 1 and 2; n2 particles between 2 and 1 
and nl+n2=N. The integral of this diagram over all 
coordinates, except 1 and 2, is equal to the product of 
the propagator for a free particle and a "reciprocal 
temperature interval" nl{3 and the propagator for a 
second free particle and a "reciprocal temperature in
terval" n2f3. Let us introduce the convention of repre
senting an integrated diagram of the kind appearing 
in Fig. 5 by a "toron,"7 i.e., a closed loop containing as 
many cycles as particles in the diagram. The integrated 
diagram corresponding to Fig. 6a is shown in Fig. 6b 
and its contribution to the generalized cluster integral 
A p (2) is given by 

As it is shown in Appendix A the total number of dia
grams of this kind, for a fixed value of nl and n2 is 
(N - 2)! so that the contribution of the first kind of 
diagrams to the generalized cluster integral A p(2) is 

I_n, -.z 
(al 

E OOO~200 nj 
I 

(b) 

FIG. 6. (a) A typical diagram of the first kind. nl is the number 
of particles between 1 and 2; n2 the number of particles between 2 
and 1; and nl+n2=N. (b) The integrated diagram shows ex
plicitly points 1 and 2 and the corresponding cycles nl and n2. 

7 See footnote 3 for a discussion of this concept. 
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after letting N = p+ 2 8 

El (2:n1Y (2:n2Y 
[n,+n.=p+2) 

X exp[-~(rl- r2)2-~(rl- r2)2], (16) 
2nl 2n2 

where {nl+n2= p+2} denotes all possible sets of values 
of nl and n2 such that their sum is equal to p+ 2. By 
calling Fo(2)(rl,r2) the function F(2) for the ideal gas, 
we have after substituting (16) into (13) and setting 

By rearranging terms and using the function 

00 zn 
g~(Z,S)=L -exp(-Nn), (17) 

n=1 n~ 

we obtain 

Fo(2)(r1,r2)=X-6{ g{z, r~2(7r)t] r (18) 

where r12= I rl- r21· 
By writing the pair distribution function p(2) (rl,l2) 

in terms of the pair correlation function g(2) (rl,r2), 
we have 

(19) 
so that 

g(2) (rl,r2) = 1 + p-2F (2) (r1)r2). (20) 

Thus, from Eqs. (18) and (20) we get the pair cor
relation function for an ideal Bose gas 

which is the well-known formula of London and Placzek. 

B. Transfonnation Fonnulas from Coordinate 
to Momentum Space 

The evaluation of the contribution to the function 
F(2)(rl,r2) resulting from the second and third terms in 
Fig. 5 is most easily performed in momentum space; 
therefore, in this section, we shall give the necessary 
formulas to perform such a calculation. Let us consider 
the eigenstates of the coordinates, the momenta and the 
energy which we shall denote, respectively, by I r), I k) 
and I n). These eigenstates are related by 

(r I n)= cp,,(r) (k I n)=lf,,(k), (22) 

8 Because we need fU p+.(B) (rl,r.,· .. ,rN )tJ3ra· . ·a,a'N and we 
have calculated fU N(B) (rl l .. ,rN )tJ3ra· . ·tJ3rN. 

where cp,,(r) is the properly symmetrized eigenfunction 
of the Hamiltonian H of the system corresponding to 
the eigenvalueE" and If,.(k) is its Fourier transform 

It must be emphasized that Eq. (23) is valid true re
gardless of whether the wave function CPn(r) obeys 
Fermi-Dirac or Bose-Einstein statistics, provided that 
it is properly normalized. 

Starting from the definition, Eq. (3), of the pro
pagator for the system, it is easily shown that 

K(r',r) = (r'l e-PHI r). (24) 

Thus, we can define in a similar way a propagator in 
momentum space by 

K (k',k) = (k' I e-PH I k), (25) 

which is related to K(r',r) by 

K(k',k)= (27r)-3N f e-ik'.r'+ik.rK(r',r)tJ3Nrd3Nr' (26a) 

It is also possible to define functions W N(k',k) and 
o N(k',k) in terms of KN(k',k) just as W N(r',r) and 
UN(r',r) have been defined in terms of KN(r',r). It 
follows that the pairs (UN,ON) and (WN,WN) satisfy 
the same duality formulas analogous to Eqs. (26) as 
the pair (K,K) does. For example, 

o N(k',k) = (271")-3N f e-ik' .r'+ik.rUN (r',r) 

Xd3Nrd3Nr' (27a) 

U N(r',r) = (271" )-3N f eik,.r'-ik.rO N(k',k) 

Xd3NktJ3Nk'. (27b) 

Equations (26a) and (27a) enable us to calculate the 
free particle propagator and the binary kernel in mo
mentum space from their corresponding expressions in 
coordinate space. By using Eq. (7) it is easily seen that 
the free particle propagator in momentum representa
tion is just given by 

K(k',k)=iJ(k'-k) exp( -k2/2a). (28) 

Since the binary kernel U2(B) (r/r2'; rlr2) depends on 
the special kind of interaction which exists amongst the 
particles in the system, we shall only limit ourselves to 
the case of hard spheres. For particles having radius 
"a," the hard sphere interaction is defined by 

V(lri-rjl)=oo for 
=0 for 

Ir·-r·1 <2a , J_ 

1 ri- rj 12':2a. (29) 
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Under these conditions it has been shown2 •9 that the 
binary kernel in coordinate space, to first order in "a," 
is given by 

U2(01)(r,r'; R,R') = - (:Y ~ 
r+r' 

Xexp[ -a(R- R')2J-- exp[ -a(r+r' )2J, (30) 
rr' 

where r, r', R, and R' are the center of mass and relative 
coordinates of the interacting pair of particles. 

By substituting Eq. (30) into Eq. (27a) one obtains 

O2(01) (k11,k2'; k1,k2) 

=a(K12'-K12) exp(- K122)~GO, 
4a 11"2 

(31) 

where 

~Go= I a '2[exp(_k122)_exp(_ k1212)] 
k122_k12 a a 

(32) 

and 

K12' = k1' + k2' k12' =! (k/ - k2'). 

(33) 

Equations (28), (31), and (32) are all the expressions 
that we shall need in subsequent calculations. 

C. Contribution of the Second and Third 
Kind of Diagrams 

Let us consider next the contribution from the dia
grams of the second kind appearing in the second sum 
of the expression for U N(B). In this case, we have two 
classes of diagrams which give different contributions, 
namely, the first class which consists of all those dia
grams having particles 1 and 2 in the same cycle, and 
the second class which consists of those diagrams in 
which particles 1 and 2 are in different cycles (a special 
case in this class will be the one where particles 1 and 2 
form the interacting pair). A similar classification holds 
for the third kind of diagrams, appearing in the third 
sum of the expression for U N(B), but as we shall see, 
they may be reduced to either of the two classes for the 
second kind of diagrams. We shall consider these classes 
separately. 

(i) First Class of Diagrams 

A typical diagram pertaining to this class is shown in 
Fig. 7a where the total number of particles N has been 
divided into two parts, N1 and N 2• The first one gives 
the number of particles in the cycle to the left of the 
interacting pair and the second one the number of par
ticles in the cycle to the right. Thus, N 1+N2=N. The 
number N1 is itself subdivided into three numbers: 
na which gives the number of particles preceding par
ticle 1 and excluding it; n1 which gives the number of 
particles between 1 and 2, including 1 and excluding 2; 

9 Jean Peretti, Tech. Rept. No. 119 (1958), Physics Dept., 
University of Maryland. 

UJN',N' :f14ij;:J ~ (9, 
4-na_'4-n._24-n2_ .. n .. ~ 
• Nl • --Na-+ "2 

(0.) (b) 

FIG. 7. (a) A typical diagram of the second kind, first class. na 
is the number of particles preceding particle 1; nl the number of 
particles between 1 and 2 excluding 2; n2 the number of particles 
between 2 and the particle preceding the interacting pair; n4 the 
number of particles following the particle which is after the inter
acting pair. (b) The integrated diagram in momentum space. 
Since kl and k2 are constant in the integration, the number of 
particles between 1 and 2 do not have to be specified, so we have 
left the diagram "open." 

n2 gives the number of particles between particle 2, 
this one included, and the particle preceding the left 
interacting particle. Therefore, the following relation 
holds 

n1+n2+na+ 1=N1. 

Similarly N2 is expressed as a sum n4+1, where n4 is 
the number of particles between the right interacting 
particle, which is excluded, and the last particle. In 
Appendix A we give another way of visualizing these 
diagrams when we discuss the combinational factor 
associated with each one of them. 

The integration of this diagram over all momenta of 
the particles except that of particles 1 and 2 is straight
forward. If we label by ka and k4 the initial momenta of 
the interacting pair and by k5 and k6 the final momenta, 
we see that the integrated diagram is equal to the 
product of four free particle propagators, in momentum 
space, over reciprocal temperature intervals of n1{3, n2f3, 
na{3 and n4f3, respectively, times the binary kernel for 
the interacting pair. That is, we have the following 
result: 

xexp ( -~2)a(k6-k4) exp ( - :~n4) 
U 2(cl) (k5, k6; k3,k4)d3k5d3k6d3k3d3k4 (34) 

and the integrated diagram is shown in Fig. 7b. 
Integration of Eq. (34) over the coordinates ka, k4 

and k5 yields the following expression: 

U 2(cl)(k1,k6; k2,k6)d3k6• (35) 

The integration of Eq. (35) and its subsequent trans
formation to the space representation are given in 
Appendix B. If we denote by D1(n"n2,na,n4; r12) the 
contribution of the first class of diagrams to the func-
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(36) 

where S2= (a/2)r122. The numbers nl, n2, na, n, are sub
ject to the following relations and inequalities: 

nl+n2+na=N1-1 n4=N2-1 

N 1+N2=N 

1~nl~Nl-1 0~n2~Nl-1 (37) 

2~NI~N-1 0~N2~N-2 

O~na~N-l. 

The total contribution of these diagrams to the gen
eralized cluster integral A p (2) with a given set of 
numbers is 

(1/ p!) (N - 2) !DI (nl,n2,na,n,; r12), (38) 

where N = p+ 2 and (N - 2) ! is the number of such dia
grams (d. Appendix A) by taking into account the 
possibility of having the particles 1 and 2 at either side 
of the interacting pair of particles. Therefore, the con
tribution to the function F(2) is 

00 

F 1'(2)(i\,r2)=L: ZN L: D1(nl,n2,na,n4; rd, (39) 
N-2 In,· ··n.} 

where the second summation is to be carried out over 
all possible set of values of nl, n2, na, n, by satisfying 
Eq. (37). 

With the aid of Eqs. (17) and (36) we finally obtain, 
for the contribution of the first class of diagrams to the 
function F(2), the following expression: 

(40) 

00 zn 
g!(z) = L: -. 

n-l n l 

The diagrams belonging to the first class of the third 
kind, give the same contribution as the diagrams of the 
first class and second kind. In coordinate representation 
this is shown graphically in Fig. 8. It is easy to see that 
the propagator for such diagrams could be obtained 
from the propagator for the first class second kind dia-

FIG. 8. A graphical representation of the process by means of 
which a diagram belonging to the first class and third kind is 
transformed into a diagram of the first class and second kind. 

grams by means of the transformation r' --t - r' and 
r --t - r. This transformation leaves the binary kernel 
invariant and thus the contribution is the same and it 
is given by Eq. (40). Hence, the combined contribution 
of the first class, second and third kind, of diagrams is 
given by 

F(l)(2) (rl,r2) 

=- ::gt(Z)g{z, r~\7r)t]g{z, r~\7r)!J (41) 

(ii) Second Class of Diagrams 

A typical diagram of this class is the one shown in 
Fig. 9a. The numbers nl, n2, na, n4, Nt, and N2 have a 
meaning similar to the ones in the preceding case and 
which may be inferred from the figure. They satisfy 
the following set of relations and inequalities: 

nl+n2+1=N1 na+n,+1=N2 

N 1+N2=N 

0~nl~Nl-1 O~n2~Nl-l 

0~na~N2-1 O~n4~N2-1. 

(42) 

f,lVt··JJ{'1;··/J.J.tJ 
·nz-t.". - ""3+2.~ 

-N._ -N2 -

jC~ 
", "li 

(a) (b) 

FIG. 9. (a) A typical diagram of the second class and second 
kind. The numbers nI, n2, n3, n., NI and N2 are defined in a similar 
way as in Fig. 7(a). (b) The integrated diagram in momentum 
space where the two ends have been left open. 

The integration of this diagram over all momenta 
follows the same pattern as the preceding case. The 
integrated diagram is shown in Fig. 9b and the result 
is given by 

U2(k l ',k2'; kt,k2) 

xexp( -:a [nlkI2+n2k/2+nak22+n,k/2]). (43) 

where we have taken into account the conservation of 
momentum expressed by the delta function occurring 
in the free propagator Eq. (29). 

The integration of Eq. (43) is given in Appendix C. 
The contribution of the second class diagrams is then 
found to be 

8a X { [r12 ] }2 
F(2)(2) = --.- g! z, -(7r)! , 

X7 r12 A 
(44) 

where we have already multiplied by a factor of 2, 
which arises from the fact that the contribution to this 
function from the second class and third kind of dia
grams is the same. This can be shown in a way similar 
to the preceding case. 
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5. FINAL RESULTS 

The total contribution to the function F(2) of the 
three different kinds of diagrams appearing in Fig. 5 
is given by 

8a 
~ 6F(2) (T1,T2) = [gJ (z,s)]2--gj (z)gt(z,s)gt (z,s) 

~ 

where 
'12 s=-(1r)t. 
}.. 

(46) 

Thus, the pair correlation function of a hard sphere 
Bose system, is given to first order in a/A, by the follow
ing equation: 

Two comments might be added about this result. 
First, the fact that the series gu(z) and gu(z,s) converge 
only for those values of z such that I z I < 1, independ
ently of CT, makes this result valid only when the system 
is in the gaseous phase. Second, the last term in Eq. 
(47) depends on the inverse interparticle distance, and 
thus makes the result valid only for large interparticle 
separations. These short comings shall be corrected in 
a further calculation. 

APPENDIX A 

In this appendix we evaluate the combinatorial factor 
associated with each of the three kinds of diagrams 
appearing in the expression for U N(B). We shall label with 
the numbers 1 and 2 the particles whose coordinates are 
not integration variables in the evaluation of the gen
eralized cluster integral A/2)(Tl,T2)' 

Let us consider the diagrams of the first kind which 
include only one cycle without any interaction. To each 
diagram we associate a box which is constructed in the 
following way: we subdivide the box in N cells and fix 
particle 1 in the first cell, particle 2 in another cell in 
such a way that the number of particle (or cells) be
tween them remains constant. The permutation symbol 
that corresponds to any such arrangement of the N 
particles amongst the N cells is the symbol of the cycle. 
This permutation symbol defines one and only one dia
gram. Let us call nl the number of particles between 1 
and 2 including 1 and n2 the remaining particles, so 
nl+n2=N. Then, for instance, if nl=3, n2=5, N=8 we 
have as a possible box the one shown in Fig. lOa and 
its corresponding diagram is shown in Fig. lOb. The 
number of diagrams which give the same contribution 
to the generalized cluster integral A p (2), for a fixed 
value of nl, is simply (N - 2) !, which is the number of 

/'/+H+/+I 
(0) 

[,/t/f,ll/[1:~(kl 
lab2cdef 

(b) 

FIG. 10. (a) A possible box for nl=3, n2=5and N=8. (b) The 
only diagram corresponding to that box. It is defined by the 
permutation symbol corresponding to the arrangement of the 8 
particles in the 8 cells of the box. 

arrangements of the N - 2 remaining particles in the 
N - 2 remaining cells. It is noteworthy to point out 
that with the convention of assigning particle 1 to the 
first cell, the correspondence between boxes and dia
grams in this case only, is one to one. Thus, the con
tribution of these first kind of diagrams to A p (2) is 
given in Eq. (16). 

Let us consider next the box diagrams belonging to 
the second kind of diagrams. We first construct our 
boxes by partitioning the N cells into two groups, one 
of NI particles and another one of N2 particles. The 
line between these two partitions will define the inter
acting pair as being the one composed by the two par
ticles occupying the cells adjacent to it. To each box we 
associate a diagram in the following way: The permuta
tion symbol defined by the numbers located in the cells 
to the left of the partition line, will give the first cycle 
of diagram, whereas the second cycle is given by the 
permutation symbol defined by the numbers located in 
the cells to the right of the partition line. It is, however, 
fairly obvious from the discussion, that since particles 
1 and 2 remain unaffected in the integrations, the con
tribution of each diagram to A p (2) will depend on the 
relative positions of these particles with respect to the 
partition line, so we must consider two classes of boxes: 

Class A 

The boxes belonging to this class will be such that 
particles 1 and 2 are always in the same side of the 
partition line, i.e., on the same cycle. These are the 
first class diagrams. 

Class B 

To this class will belong those boxes in which particles 
1 and 2 are on different cycles, i.e., on opposite sides of 
the partition line. These correspond to second class 
diagrams. 

Furthermore, let us assume that in these boxes, par
ticle 1 shall be always written at the left of the partition 
line; with this convention, the correspondence between 
boxes and diagrams is one to one. 

Consider now the boxes and diagrams belonging to 
class A. The most general type of box is that shown in 
Fig. 11 where there are ns cells before 1, nl cells before 2, 
n2 cells between 2 and the cell to the left of the partition 
line and finally n4 cells between the cell to the right of 
this line and the last one. Then, 

nl+n2+ns+1=N1; n4+ 1=N2. 
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-----NI •• N2-

FIG. 11. The general type of box associated with a diagram of 
the first class and second kind. The partition line is indicated by 
the dark, broad line. 

For a given set of numbers nl, n2, na and n4, the 
number of boxes corresponding to the set is (N - 2) !, 
which is the number of ways in which the remaining 
N - 2 particles can be distributed among the remaining 
N - 2 cells. As there is one box associated with each 
diagram, we conclude that for a given value of ni, 
i= 1, 2,3, 4 there are (N - 2)! diagrams of the first 
class and second kind giving the same contribution to 
the cluster integral A p (2). 

For the boxes belonging to class B we have for its 
general term the one shown in Fig. 12. The definition 

I II 
~. "I -.. 4-"'-----"4--
_--IN I •• N2 -

FIG. 12. The most general type of box associated with a dia
gram of the second kind and second class. This box belongs to 
class B. 

of the numbers nl, n2, na and n4 is similar to their 
definition in the preceding case, but they now satisfy 
the relations, 

nl+n2+1=N1 na+n 4+1=N2. 

We can immediately see, by a reasoning similar to that 
used in the first case, that for a given partition N 1 and 
N 2 and fixed positions of the particles 1 and 2, the 
number of diagrams of the second class and second kind 
giving the same contribution to A p (2) is (N - 2) !. 

Finally, the combinatorial factors associated with the 
third kind of diagrams is precisely the same as for the 
second kind of diagrams as can easily be verified. 

APPENDIX B 

In this appendix we evaluate the contribution of the 
first class of diagrams to the generalized cluster integral 
A p (2)(rl,l2) starting from Eq. (35). Let us denote the 
quantity Eq. (35) by D1(k1,k2). Thus we may write 

x f exp ( -n4:~)02(CI)(kt,ks; k2,ks)tf3k6. 

On writing U2 (cl) in terms of ka, we have 

U2(cl) (k1,ka; k2,k6) 

=a(k1-k2) exp[ 
(k2+ks)2J. ~Go, 

4a 11"2 

(B1) 

(B2) 

where ~Go is given by Eq. (32) and may also be 
written as 

(B3) 

where 

~r(t) 

= -~ exp{ - ~ [(ka- k 2)2(1-t)+ (ka- k1)2t]}. (B4) 

If we substitute Eqs. (B2), (B3), and (B4) in Eq. (Bl) 
and integrate with respect to ka and t, we find that 

(BS) 

Thus, in order to obtain Dl (nl,n2,na,n4; r12) we sub
stitute Eq. CBS) into Eq. (27b). We therefore find 

x f exp(ik1 ·rl-ik2 ·r2) exp[ -(Nl-nl):~] 
xa(k1 - k2)dakldak2. 

The integrations are straightforward, the result being 

4a 

A7 [N 2 (N 1 - n l)11l]J 

(B6) 

after multiplying by the constant factor (a/211"nl) , 
Xexp[ - (a/2nl)r122], which is a constant term corre
sponding to the number of loops between particles 1 
and 2 in the space representation of Fig. (7b).!O Equation 
(B6) is the desired result. 

APPENDIX C 

We wish to integrate the expression indicated in Eq. 
(43) corresponding to the diagram in Fig. 9b. Let us 
call this quantity D2(kl,k/; k2,k2'). Then, by Eq. 
(27b), its Fourier transform, which we shall denote by 
D2(nt,·· ·,n4; r/,rl,r2',r2), corresponds to the diagram 
shown in Fig. 13. In order to calculate the contribution 
of the second class diagrams to the generalized cluster 
integral A p (2) it is necessary to make in this expression 
rl=r/ and r2= r2'. Thus, we are interested in the 

10 The diagram is the same, except that kl is substituted by 
r, and k2 by r2. 
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quantity 

with 

= (271")-6 f D2(k1'k2'; k1,k2)ei(kl" n'+k2' ·I2'-kl·r,-k2· r2) 

Xd3k1d3k2d3k/tPk/, (Cl) 
where 

D2(k1'k2'; k1,k2) = 02(k1'k/; k1,k2) 

xexp[ - 2
l
a (n1k12+n2k1'2+n3k22+n4k2'2) 1 (C2) 

If we use the change of variables, Eq. (33), where we 
shall drop the index 12, and use the condition r1' = f1, 
f2' = f2, we have, after integrating over K', the result 

-a 
D1(n1,' .. ,n4; f12) =-_(271")-6 

71"2 

J exp( -k2/a)-exp( -k'2/a) 
X exp( - K2/4a) --------

k'2_k2 

{ 
1 1 

Xexp --(n1+n2+n3+n4)KL-K 
8a 2a 

X [(n3-n1)k+ (n4-n2)k'] 

-~[(n1+n3)k2+ (n2+n4)k'2]+i(k- k'). f12} 
2a 

Xd3Kd3k'd3k. (C3) 

If we integrate over K and introduce the following 
.quantities: 

A 1 
-=-{N(n1+n3)- (n3- n1)2}; 
2 2aN 

A' 1 
-=-{N(n2+n4)- (n2- n4)2} 
2 2aN 

1 
B= --(n3-n1)(n4-n2), 

aN 

xexp{ _[~k2+ ~'k'2+Bk'k'] 

(C4) 

+i(k- k')· f12 }. (CS) 

In order to perform the integrations over k and k' 
we notice that the integrand remains finite when k= k' 
so that the factor (k'2- k2)-1 can be replaced by 
P(k'2_k2)-1,u We then use the following expression 
for P{1/x) : 

1 l[ 00 0] 
P-=-. i eixtdt-f eixtdt . 

x 2~ 0 -00 

(C6) 

Thus, if we substitute (C6) into (CS) we obtain four 
terms, the first of which is given by 

and which upon integration over k and k', becomes 

(271")3 oo-i(a-a') 2dr 

11=---:;: [i(a-a,) {r2+(a+a')2-4b2}! 

where 

( 
2(a+a'+2b) ) 

Xexp f122 , 
r2+ (a+a')2-4b2 

2 
a=A+- a'=A' b=B. 

a 

(C8) 

(C9) 

Similarly, the second term resulting from the sub
stitution of (C6) into (CS) is 

(271")3 -ita-a') 2dr 

12=---:;: [oo-i(a-a') {r2+(a+a')2-4b2}1 

( 
2(a+a'+2b) ) 

Xexp f122 . 
r+(a+a')2-4b2 

(ClO) 

From (C8) and (ClO) we obtain, after making the 
change of variable t= -ir 

(Cll) 

an integral which is easily evaluated in terms of the 

FIG. 13. Space representa
tion of the most general open 
diagram of the second class and 
second kind. 
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error function by using the formulaI2 .I3 

According to Eq. (C9) and the definitions of A, A' and 
B, the three functions a, a' and b of the variables nl, n2, 
na and n4 are obtained by the substitutions 

nl~nl+1; n2~n2; na~na+1; n4~n4 (C13) 

in the three functions X, X', Y of the same variables, 
defined as follows: 

1 
X [(N-2)(nl+na)- (nS-nl)2] 

ct(N-2) 

1 
X' [(N - 2)(n2+n4)- (n4-n2)2] 

ct(N-2) 

1 
Y = (na-nl) (n4-n2) 

ct(N - 2) 

with N-2=nl+n2+na+n4. Therefore, if we call 
P(nJ,n2,nS,n4) the function defined by 

x-x' dt 
P(nl,n2,na,n4) =i 

o [(X+X')2-4Y2-f]f 

( 
2(X+X'+2Y)r122) 

Xexp , 
(X+X')2-4Y2-f 

(C14) 

we have that 

J 1-J2= 2 (271-)3P(nl+ 1, n2, na+1, n4)' (C1S) 

In a similar way, we find that the two other terms of 
Eq. (CS) yield 

-Ja+h=2(211')3P(nl' n2+1, na, ~+1), (C16) 
and 

2a 1 (811'ct)f 
= ---- -- [P(nl+ 1, n2, ns+ 1, n4) r (211')3 N 

-P(nl, n2+1, 1Zs, n4+1)]. (C17) 
11 P means principal part of. 
12 Equation (C12) is obtained if in the formula in the left, 

where O<qS:,P we make t=pwt(1+w)t and the square roots are 
taken positive. The resulting integral may be expressed as an 
error function. 

13 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, 
Higher Transcendental Functions (McGraw-Hili Book Company, 
Inc., New York, 1953), Vol. II, Chap. IX. 

Since the combinatorial factor corresponding to these 
diagrams for a given value of the set nl, n2, na, n4, is 
(N - 2) ! th~ contribution of the second class of diagrams 
to the functions F(2) (rl,r2) is thus 

2a(811'ct)3 00 00 00 00 zn1+n2+n3+ n4+2 
-- L: L: L: L: 

811'5 m=O n2=() n3""O n4=() (nl+n2+nS+n4+2)1 

X[P(nl+1, n2, na+1, n4)-P(nl, n2+1, ns, 1Z4+l)J, 

and after separating the two terms and after proper 
cancellations have been done we find 

(CI8) 

When nl=na=O, we have that X=O, Y=O, therefore, 
p2, q and s occurring in (C12), which is of the same type 
as (C14), take the values X'2, -X' and 2X'r122, re
spectively. Furthermore, since P=q2 and q<O the error 
function in (C12) is independent of s and equal to, 
- (11')1/2. Thus 

(11')1 1 1 (21'122) 
P(O·n20n4)=------exp -- (C19) 

, " 2 Vl1'12 X'I X'' 
where 

In the same way, when nl=na=O, we have X'= Y=O" 
p2=X, q=X and S2=2Xr122. Thus, we find 

(11')1 1 1 (21'122) 
P(nl,O,ns,O) = - -- - exp --- , 

2 Vl1'12 XI X 
(C20) 

where 

X 
ct(nl+na) 

On substituting (C19) and (C20) into Eq. (C18) and 
noticing that the two resultant terms are identical, we 
find that 

or 

which is the contribution from the second class of dia
grams and second kind to the function F(2). 
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A formal solution of Liouville's equation both for the classical and for the quantum mechanical case is 
presented. The derivation follows closely the approach employed by Feynman in his papers on the theory 
of positrons (Phys. Rev. 76, 749 (1949), ibid. 76, 769 (1949». A scattering operator S is found which 
connects the distribution function at time t' with the distribution function at any later time t. Each term 
of this scattering operator can be represented uniquely and conveniently by a diagram. The topological 
structure of these diagrams is the same in the classical as well as in the quantum mechanical case. Applica
tions of the method will be given in a forthcoming paper. 

1. INTRODUCTION 

T HE Liouville equation represents a natural 
starting point for studies of nonequilibrium 

statistical mechanics.! It was soon realized that the 
many body problem encountered in statistical mechan
ics may advantageously be handled by the mathematical 
methods especially developed for the infinite many 
body problem of quantum field theory.2 As an example 
Prigogine and collaborators3 used the S matrix formal
ism in some of their papers. Furthermore, the well
known approach by Prigogine and collaborators to the 
solution of Liouville's equation by means of Fourier 
transforms and a diagram technique4 bears much formal 
resemblance to field theoretical methods. In this paper 
we present a formal solution of the Liouville equation, 
which is based on Feynman's approach to the solution 
of the Schrodinger equation. 5 In Sec. 2 the actual 
derivation will be given. An integral kernel plays the 
central role of the development. This kernel is somewhat 
similar to the phase space transformation function 
introduced by Ross and Kirkwood6 although it is a 
Green's function rather than a solution of the homo
geneous Liouville equation. The various contributions 
of a perturbation expansion of this kernel give rise to 
corresponding contributions to the distribution function 
which may be classified by diagrams. The modifications 
caused by quantum mechanics will also be outlined 
for the case of the Wigner distribution function. 7 In 

1 J. G. Kirkwood, J. Chem. Phys. 15, 72 (1947); J. Ross and 
J. G. Kirkwood, J. Chem. Phys. 22, 1094 (1954); H. Mori, 
S. Ono, Progr. Theoret. Phys. (Japan) 8, 327 (1952); H. S. Green, 
Proc. Phys. Soc. (London) A64, 325 (1953); R. Brout and 
I. Prigogine, Physica 22,621 (1956); I. Prigogine and J. Philippot, 
Physica 23,569 (1957); A. W. Saenz, Phys. Rev. 105, 546 (1957). 

2 See for instance B. S. de Witt, "The operator formalism in 
quantum perturbation theory," University of California, Berkeley, 
California (September, 1955). 

3 I. Prigogine and F. Henin, Bull. Acad. Sci. Belg.U, 814 (1957); 
P. Resibois, Physica 25, 725 (1959). 

• r. Prigogine, "Statistical mechanics and thermodynamics of 
irreversible processes," Free University of Brussels, Techn. Rept 
EORDC PR 59-18. 

S See, for instance, the account of this approach in S. S. 
Schweber, H. A. Bethe, and F. de Hoffman, Mesons and Fields 
(Row Peterson and Company, 1956), Vol. 1, p. 54. 

6 J. Ross and J. G. Kirkwood, J. Chem. Phys. 22, 1094 (1954); 
J. Ross, J. Chem. Phys. 24, 375 (1956). 

7 E. P. Wigner, Phys. Rev. 40, 749 (1932). 

Sec. 3 the physical significance of the dia.grams is 
clarified by means of an equivalent perturbation 
expansion of the equations of motion. In a subsequent 
paper the method described on the following pages will 
be applied to problems of physical interest. 

2. DERIVATION 

The classical Liouville equation for an N particle 
system may be written as 

(:t+ V 'V'R )f(RV,t)= - F(R, V)· V'vf(R, V,t). (1) 

We use the abbreviation R for the set of position 
coordinates rl, r2, .. , r tV of the fIT particles. Similarly, 
V is short for VI, v 2, ... V tV the velocities of the particles. 
F=FI , F2, .. ·F.v, where Fj is the force acting on 
particle j divided by its mass. We allow F to be a 
function of both position and velocity. The symbol 
V· V'R, for instance, is an abbreviation for 

tV 

V· V'R= LVi' V'ri. 
i=1 

We now introduce a kernel G(R, V,t; R/, V/,t') which 
allows us to express the distribution function feR, V,t) 
for t>t' by 

feR, V,t)= J dR'dV'G(R, V,t; R/, V',t)f(R', V/,t' ), (2) 

if it is known at an earlier time t'. The integration runs 
over the complete phase space 

dR' dV' = aarl' aar2' ... d3vl' aaV2' .... 

The kernel G has the following properties: 

(;/ V· V'R+F·V'v )G(R, V,t; R', V/,t') 

=5(R-R')5(V- V/)5(t-t') (3) 

lim G(R, V,t; R/, V',t')=5(R- R')5(V- V'). (4) 
t-+t' 

107 
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Equation (3) shows that G is a Green's function of the 
Liouville equation. Equation (4) is necessary for Eq. (2) 
to be consistent. Equations (2)-(4) are strongly 
reminiscent to Feynman's approach to the solution of 
Schrodinger's equation. In fact, replacing the operator 
V·V'R+F·V'v by the Hamiltonian H and the distribu
tion function f by the wave function 1/1, Eqs. (2), (3), 
and (4) are identical with Feynman's theory.s 

We now propose to solve Eq. (3) by an iteration 
method assuming weak interactions. We obtain 

G=GO+G1+G2+· .. (5) 

(;/ V'V'R )Go=8(R-R/)o(V- V/)O(t-t' ) (6) 

(:t V'V'R)Gn=-F'V'vGn_l n~1. (7) 

By inserting the expressions (8) and (11) into Eq. (2) 
and by performing the phase space integrations as 
indicated we get the following result. The distribution 
function at time t is connected with the initial distribu
tion function at time t' through a scattering operator S, 

feR, V,t)=Sf(R- V(t_t'), V,t') , (12) 
where 

QO 

S= L Sn So=1, (13) 
n9J 

and (for n~l) 

n 

XIIF(R-V(t-ta),V)'Pa (14) 
0:=1 

The solution of Eq. (6) is immediately written down8 with 

Go(RVt; R/Vlt')=o(V- V') 

X8[(R-R/- V/(t_tl)]S(t_t'), (8) 

where we introduced the step function 

{
1 for x>O 

S(x)= 
o for x<O. 

(9) 

It is easily seen that Eq. (4) is satisfied for expression 
(8). From Eq. (7) we have 

Gn(R, V,t; R/, V/,t') 

= - f dt"dR"dV"Go(RVt; R"V"t") 

X F(R", V")· V'v"Gn-1(R", V",t"; R' V't'). (10) 

Successive application of Eq. (10) reveals after straight
forward calculation that 

Gn(RVt; R/Vlt' ) 

n 

X(-1)n8[(R- V(t-t1)- L Vj(tj-l-tj) 
j~2 

- V/(tn- t')JF(R- V(t- tI), V)· Vv8( V - V2) 

X F(R- V(t- tI)- V 2(tt- t2), V2)· V'V2 

X8(V2- Va)" ·F(R- V(t-t I ) 

n 

- L Vj(tj_I- tj), V)· V'vnS( Vn- V'). (11) 
i~2 

8 The solution Eq. (8) is the retarded Green's function. The 
advanced Green's function is found by replacing sCt-t') by 
-S(t'-t). We take the retarded Green's function of course 
since we are interested in the future knowing the present, i.e., 
the distribution function at time t'. 

n 

Pa= V'V- (ta- t')V'R- L [V'v- (ta- t!1)V'R] 
/l==aH 

(15) 
n 

=Pa ,+ L Pa !1' 
/l==aH 

The grad V'v in expressions (15) is always connected 
with a grad V'R in the specific configuration 

(16) 

The operator Pall is defined to act only on that function 
of R and V, which contains the same time label p. 
Furthermore, Vv does not act on the argument 
R- Vet-til). In other words, 

Pa/lF[R- V(t-t'Y)' V]=8/l'Y{V'v F[R-V(t-t'Y)' V ] 

- (ta-t/l)V'R F(R - V(t-t'Y)' V)} (17) 

with V'v operating only on the second argument of F. 
By inserting Eq. (15) into (14) we see that Sn can be 
expressed by a sum of terms of the following structure: 

n 

X II F(R- V(t-ta),V)'Pa'Ya' (18) 
_1 

In Eq. (18) it is 'Ya>a, but otherwise arbitrary and 
the sum runs over all n! possibilities to pick a set of 
'Ya>a. Any particular term of the sum (18) may be 
represented by a diagram. We define the diagrams in 
the following way: An nth order diagram consists of 
n+ 1 vertices labeled with a time coordinate fa starting 
with the latest time tl on the left (Fig. 1a) and ending 
with a vertex associated with the earliest time t' the 
initial time on the right. From each vertex a (except 
the one associated with t') one and only one directed 



                                                                                                                                    

FORMAL SOLUTION OF LIOUVILLE'S EQUATION 109 

solid line starts which ends at any arbitrary vertex {3 
with an earlier time including the last vertex (Fig. Ib). 
The last vertex associated with the initial time t' is 
called the external vertex (each diagram has only one 
external vertex) all the others are called internal 
vertices. A solid line starting from any internal vertex 
and ending at any other internal vertex is called an 
internal line. If it ends on the external vertex however 
it is called an external line. Fig. 1 (c) shows a possible 
5th order diagram with 2 external and 3 internal lines, 
similarly Fig. Id shows one with 3 external and 2 
internal lines. The number of lines is equal to the 
number of internal vertices, i.e., the order of the diagram. 
There are n ! different diagrams of order n corresponding 
to the n! different ways of connecting any two of the 
n+ 1 vertices by a solid line such that only one solid 
line starts from any internal vertex. We associate 
with each vertex 0: the factor - F(R- V(t-ta), V) and 
with an internal line the operator Pa~, which acts on 
the -F(R- V(t-t~), V) associated with vertex {3 in 
the manner specified by (17). Furthermore, associated 
with an external line starting at the vertex 0: is the 

0 0 0 0 0 X-J," 
1 .{, 3 If- $" 

a 

~ 

~. 
~" 0 CJ 

I ).. 3 't- ~-

b 

L 3 V- f; 

C 

L 3 if t;; 

d 

FIG. 1. (a), (b) construction of a diagram. (c), (d) two 
possible 5th order diagrams. 

rx4,/ , 
a 

~+' 
, ,z.. 

b 

~~, 
, .z. 

c 

FIG. 2. (a) first order diagram. (b), (c) the two 
second order diagrams. 

operator 
Pa,=Vv- (ta-t')VR, (16a) 

which acts on the initial distribution function repre-
sented by the external vertex. We now see that any 
given diagram (Fig. lc, d for example) represents 
uniquely one term of the sum (18). As an example, 
Fig. 2 shows the three lowest order diagrams. According 
to the rules outlined above the first-order contribution 
(Fig. 2a) is given by 

Sl=- ft dtxF(R- V(t-t1),V),P1, 
t' (19) 

=- ft dt1F(R- V(t-tx),V)·(V'V-(t1-t')V'R). 
t' 

The second-order contribution Fig. 2b is given by 

it ft! 
S2= t' dt1 t' dt2F(R- V(t- t1), V) 

. P 12F(R- V(t- t2), V)· P2,. (20) 

Here P12 acts on the succeeding F, whereas P2, acts 
on the initial distribution function as explained in the 
foregoing. The other second-order contribution Fig. 2c 
is given by 

r III S2' = . " dt1 t' dt2F(R- V(t- t1), V) 

. P1,F(R- V(t- t2), V)· P2" (21) 
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where both P act on the initial distribution function. 
Turning now to the quantum mechanical Liouville 
equation for the Wigner distribution function 7 we 
restrict ourselves to the case in which the force F is 
derived from a potential F(R) = - 'ilR4>(R). The 
Liouville equation for the Wigner distribution function 
PW) is well known to be9 

(~+ V· 'ilR)PW) =: sin(~'ilR' 'ilv)q,(R)PW). (22) 
at It 2M 

Here the operator 'ilR acts only on the potential q,(R). 
The sin operator is defined by its power series expansion. 
It is easily seen that the scattering operator S for PW ) 

may still be determined by the same diagrams as in the 
classical case. Only the rules of associating an internal 
vertex and an internal line to a given mathematical 
quantity have to be changed. An internal vertex a 
represents now 

external lines. The physical significance of an internal 
or external line will be made clear by the following 
considerations. In zeroeth order the motion of the 
particles is undisturbed. They proceed along straight 
lines. In fact, the scattering operator being So= 1 to· 
zeroth order we have frolll Eq. (12) 

feR, V,t) = f(R- V(t-t'), V,t'). 

To see how precisely the higher order terms of the 
scattering operator introduce deviations from the· 
unperturbed straight lines of the zeroeth order approxi
mation, we outline here a perturbation scheme applied 
directly to the equations of motion, which is completely 
equivalent to the perturbation analysis for the scatter
ing operator described in Sec. 2. By confining ourselves 
to the classical equations of motion and to forces which 
depend only on the position we have 

(27) 

together with the initial conditions 

(23) R(t') = R' (dR/dt)(t') = V. (27a) 

An internal solid line connecting the vertices a and fJ 
represents 

(24) 

where 'ilR acts on the potential associated with vertex 
fJ. By the way the operator P a/3 Eq. (16) is also replaced 
by P a{3' Eq. (24) in the classical case if the forces do not 
depend explicitly on the velocity as is seen from 
Eg'. (17). The complete expression for the part of the 
diagram shown in Fig. 1b is according to (23) and (24) 

... : sin(~'ilR' Pd)q,(R- V(t- t2»· . '. (2S) 
It 2M 

An external solid line is still represented by (lSa). 
As an example let us consider the diagram Fig .. 2b. 
It represents 

S2'=lt dtlltl dt2:sin(~'ilR'P12') 
t' t' It 2M 

Xq,[R- V(t-tl)]:sin(~VR'P2I') 
It 2M 

Xq,[R- V(t-t2)]. 

3. DISCUSSION 

Having established the rules which generate the 
scattering operator S we like to discuss some of the 
consequences at this point. First of all we notice that 
the nth order term of the series for S consists of a sum 
over n diagrams with a various number of internal and 

9 J. M. Irving and R. W. Zwanzig, J. Chern. Phys. 19, 1173 
(1951). 

We introduced a small expansion parameter A and write 

(28) 

By inserting (28) into (27) we have the successive 
approximations 

d2R/dt2=O 

d2R/dt2=F(Ro) (29) 

d2R/dt2=RI·'ilRoF'(Ro), etc., 

and the initial conditions are 

Ro(t')=R' (dR/dt)(t') = Y 
RI(t')= (dR/dt)(t')=O 

R2(t') = (dR/dt)(t') =0, etc. 

(29a) 

H follows from (29) and (29a) that the successive 
approximations to the acceleration are given by 

~R/dt2=0 

~R/dt2=F[R'- V(t'-t)] 

d2R/dt2=J
t 
dtlftl dt2F[R'- V(t'-t2)] 

tl t' 

(30a) 

(30b) 

''ilRF[R'- V(t'-t)], etc. (30c) 

A glance back to Eqs. (19) (20) and (21) and a compari
son with Eqs. (30b) and (30c) reveals that Eq. (19) the 
first-order scattering operator takes into account a 
deviation from the unperturbed straight paths of the 
particles to exactly the same degree of approximation 
on which Eq. (30b) is based. Expression (20) corre
sponding to the diagram with one internal line (Fig. 2b) 
takes into account a first order correction to the first
order effect given by (19) (it is therefore of second 
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order). The exact analog to this correction expressed 
by an internal line is Eq. (30c). But this is not all that 
might happen in second order! Actually, a new 'scatter
ing' may be introduced at some other time between t f 

and t. But Eq. (21) corresponding to the diagram with 
two external lines (Fig. 2c) represents precisely the 
contribution from this event again to the correct order 
of magnitude. These findings may now immediately 
be generalized to an nth order contribution. Suppose 
we have a specific nth order diagram which represents 
-one of the n! nth order contributions to the scattering 
operator. This diagram generates n+ 1 diagrams of the 
(n+ l)st order. By adding a new internal vertex to the 
left of the nth order diagram and connecting it with 
either of the n other internal vertices we obtain n new 
possible diagrams with one more internal line. By 
connecting it with the external vertex we obtain one 
new diagram with one more external line. From the 
previous discussion it is clear that the (n+ l)st order 
<l.iagrams generated from a specific nth order diagram 
take into account a correction to the path of anyone 

particle in the sense of Eq. (30c). This is possible in n 
different ways corresponding to the n different new 
internal lines. Whereas the possibility of a new 'scatter
ing' is represented by the addition of a new external 
line. In short, internal lines represent corrections to 
already existing scatterings and external lines represent 
the introduction of new scatterings. Of course, it should 
be realized that this explanation is more or less heuristic 
since we did not introduce scattering cross sections 
explicitly. The scattering operator rather gives the 
detailed time dependence of the distribution function 
and is therefore completely equivalent to the exact 
knowledge of the orbits of all the particles involved. 
This is far too much information to be useful. In fact, 
in order to extract useful information one has to have 
recourse to averaging procedures. One may introduce 
singlet doublet, etc., distribution functions, and sub
sequently use Kirkwoods coarse graining device,lO 
'Stosszahl ansatz', etc j But this is beyond the scope of 
the present paper. 

10 J. G. Kirkwood, J. Chern. Phys. 14, 180 (1946). 
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The diagram technique recently developed by the author (see footnote 1) for the solution of Liouville's 
equation is extended and suitably modified to cover the case of the collision less Boltzmann equation for a 
plasma. The usefulness of the method is demonstrated by two problems. These are: first, the influence of a 
plane polarized electric wave on the electron distribution function of a low-temperature plasma, and second, 
the propagation of a (small) initial disturbance for the case of a plasma which is governed by the Vlasov 
equation (see footnote 8). 

1. INTRODUCTION 

I N another paperl a solution of the Liouville equation 
for an N particle system was found essentially by 

expanding the associated Green's function into a 
Sturm Liouville series. The result obtained may be 
stated as follows: The distribution function j at time 
t is uniquely connected with an arbitrarily prescribed 
initial distribution function jo at time t' through a 
scattering operator thus 

j(R,V,t)=Sjo(R- V(t-t'), V, t'). (1) 

The scattering operator in turn is given by the series 

(2) 

with So= 1 and each Sn for n ~ 1 turned out to be a 
sum of contributions consisting of various products of 
forces and gradients. The structure of these terms can 
be expressed by diagrams and each contribution may 
be written down easily according to the rules given in I. 

However, it is to be remarked that a complete solu
tion according to this scheme is more or less useless if 
it is not supplemented by statistical considerations. Of 
course, an exact solution of Liouville's equation is 
equivalent to an exact solution of the equations of 
motion of the 1Y particle system, which is as everybody 
knows a prohibitive venture. 

The case we wish to consider here is the case of the 
so-called collisionless Boltzmann equation for a plasma. 
This equation describes a system of charged particles 
in which only the influence of the long range forces is 
taken into account. It can be shown2 that the collision 
less Boltzmann equation is obtained from Liouville's 
equation with only one statistical assumption. This 
assumption is that the distribution function for the N 
particles factorizes into a product of distribution func
tions for each individual particle3 

j(R,V,t) = j(rlr2" 'rN; VIV2" 'VNt) 
=f(rl,vlt)f(r2,v2t)·· ·f(rN,vNt). (3) 

1 D. von Roos, J. Math. Phys. 1, 107 (1960). Hereafter referred 
to as I. 

2 N. Rostocker, General Atomics Rept. GAMD-663 Guly 10 
1959) (unpublished). ' 

3 The presence of transverse photons does not change this 

Considering j as the probability density for finding 
particle 1 at rlVl, particle 2 at r2V2 etc., Eq. (3) is an 
expression for the assumption that the particles are 
uncorrelated (the joint probability is equal to the 
product of the individual probabilities). This assump
tion introduces of course errors. It is intuitively clear 
that assumption (3) should break down under any 
circumstances if two or more particles come close to 
each other. At low enough densities the encounter of 
more than two particles is a rare event and the close 
encounter of two particles finds its expression in the 
collision integral.4 Therefore, to maintain assumption 
(3) for all values of rj and Vj simply means to neglect 
the collision integral altogether. This would be a bad 
approximation if any appreciable forces would only be 
exerted during close encounters as it is the case in a 
neutral gas for instance. But the situation is different 
with a plasma. Here we have predominantly the long 
range Coulomb forces between the particles so that the 
error made by neglecting collisions may presumably be 
within tolerable limits. 

In Sec. 2 we are going to derive the solution of the 
initial value problem for the collisionless Boltzmann 
equation. The method of solution will be patterned 
after the approach given in I. However, owing to the 
nonlinear character of the basic equation the scheme to 
be developed will be more complex than that given in L 
But the diagram representation of I can be extended 
naturally to cover this case. The advantage of the 
diagram method will be demonstrated in Sec. 3. Once 
the rules of the game, i.e., the connection between the 
topological structure of a diagram and the mathe
matical structure of its algebraic counterpart are known 
it is only a matter of comparatively simple algebra to 
obtain explicit expressions for the solution of the 
collisionless Boltzmann equation in many cases, that 
is in cases where the number of possible diagrams repre
senting nonvanishing contributions is not forbiddingly 
high. The real advantage of a diagram expansion is 
here as elsewhere (for instance, Feynman diagrams) to 
keep track of a large number of possible contributions 
so that nothing is forgotten and to see immediately 

statement. Only the distribution function has to be suitably 
modified to include the additional degrees of freedom. 

4 See, for instance, J. G. Kirkwood, J. Chern. Phys.lS, 72 (1947). 
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whether a certain contribution actually vanishes as 
the case may be. Here, as elsewhere, a diagram by itself 
does not have any physical significance other than that 
of the algebraic expression it stands for. 

2. DERIVATION 

The collisionless Boltzmann equation in its most 
general form may be written as2 5 

a 0 

(ai+v. V'r )h(r,v,t)= Aj(r,v,t)· V'.h(r,v,t) 

+fl dt'fd3r'tfdV'" B··(r v t· r' v't') £....J 3t , " , , 

-00 i 

Xji(r',v',t')· V'.h(r,v,t). (4) 

In this equation the meaning of the various terms is as 
follows: h(r,v,t) is the distribution function for par
ticles of kind j (electrons ions etc.). The vector Aj 
represents an eA1:ernally applied force acting on the 
particles of kind j. The integral kernel Bji stands for 
the interaction of the particles among each other and is 
essentially given by a complete solution of Maxwell's 
equations.5 The retardation is properly accounted for 
by the integral over all times t' earlier than t. If re
tardation is neglected Bji contains a factor 5(t-t'). 
Equation (4) is now solved with the following "ansatz," 
which is nothing else than an ordinary perturbation 
expansion with respect to A and B. 

so that 
[(ajat)+v· V'rJ1/0) =0 

[(ajat)+v· V'rJf/l) 

I 

= Ar V'.h(O) + ioodt' f d3r'dV ~ Bj;(r,v,t j r',v',t') 

(5) 

(6) 

Xfi(O) (r',v',t')· V'.j/0l, (6a) 
and, in general, 

t 

+f dt'jd3r'd3v'" B· ·(r v t· r' v' t') ~ J' , " , , 

-00 i 

n-l 

XL j/m) (r', v',t')· V'.j/n-l-m). (7) 
m=O 

Let us assume that we know the distribution functions 
h for some initial time T 

h(r,v,T)= j/(r,v,r). (8) 

6 W: E. Brittin, Phys. Rev. 106, 843 (1957). 

We also specify the initial electromagnetic fields 

E=Eo(r,v) } 
for t=1". 

H=Ho(r,v) 
(9) 

This, of course, is tantamount to assuming that we not 
only know the distribution function at t= r, but also 
for earlier times since 

e· ( 1 ) -~ Eo+-vXHo 
mj c 

= frdt'f tfdr'd3v'Bji (r,v,tj r'v't')fi(r',v',t'). (lOj 
-oo 

Without retardation, Eo and Ho are uniquely given by 
the initial distribution function 1* alone. 

The solution of Eq. (6) together with (8) is given by 

1/0)=h*(r-v(t-T),v,r) for t2.r, (11) 

so that the equation for the first order contribution 
1/1) Eq. (6a) reads 

(;+v.V.)fP)=ArV'vf/(r-v(t-r), v, T) 

e· ( 1 ) -~ Eo+-vXHo . V'.j/(r-v(t-T), v, T) 
mj C 

t 

+f dt'fd3r'dV" B··(r v t· r' v' t') £..... H , " , , 

T i 

Xji*(r'-v'(t'-r), v', T)·V'.f/(r-v(t-T), v, r). (12} 

From now on we will incorporate the second term on 
the right-hand side of Eq. (12) into the first one without 
specific change of notation. Equation (12) is easily 
solved with the aid of the Green's function introduced 
in I [see I, Eq. (3)J and the first-order contribution is 

fP) = fldtl { Aj(r- v(t- tl), v, tl) 

+ II'dt' f d}r'tfdv'~ Bji(r-v(t-tl), v,tljr', v',t') 

Xf;*(r'- v'(t'- T), v', r) }. [V'v- (tl- T)V'rJ 

Xh*(r- v(t- T), v, T). (13) 

We note that the term involving the external forces A 
is exactly equal to the corresponding term in the ex
pansion of Liouville's equation given in 1.6 Of course, 

6 The properties of the operator V.-(t,-T)V r are explained 
in 1. We note here that V. only operates on the second argument 
v in 1*(r-V(t-T), v, T). 
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this is to be expected since Eq. (4) without the non
linear term is just the (one particle) Liouville equation. 
Now, inserting Eq. (13) back into the equation which 
expresses //2) by /;(0) and //0 one is easily able to 
determine //2). On continuing along this line, expres
sions may be found for /;(3)//4), etc. In principle, the 
distribution function is therefore known for all times 
t> T provided it is known together with the initial fields 
for t= T. However, it must be said that owing to the 
nonlinear character of the basic Eq. (4) the higher 
order terms become rapidly more and more involved so 
that in practice we are as far from a general solution 
as if we had confined ourselves to simply write down 
Eq. (4) and let it go at that. Fortunately, the outlook 
is not so dim in many cases of interest, namely in cases 
where some kind of approximations are allowed. But 
in order to see how exactly any given approximation 
influences higher order terms //n) we have to study the 
mathematical structure of a term of arbitrary order. 
This we do conveniently by means of a diagram tech
nique which allows us to express any contribution to /; 
in a concise way. In another paperl we already de
veloped a diagram scheme which is applicable to the 
present problem in its entirety. Provided that the non 
linear term of Eq. (4) is missing the scheme developed 
in I is completely sufficient and all contributions to any 
order are given by those diagrams. The first-order 
-contribution for instance is given by (13) if we drop 
the nonlinear (B containing) term. It is represented 
by the diagram 

6'x 
I . 

The reader is referred to I for details. The second-order 
-contributions 

a ~x 
I 2 

s=~ 
( 2 

(14) 

-can immediately be written down with the help of the 
rules given in I, and we find 

.0:= fldtl ftldt2A(r- V(t-tl), v, tl ) 

T T • P12A(r- v(t-t2), v, t2). P2Tj* (15) 

/3= ftdtlftldt2A(r- V(t-tl), v, II) 

T T • PITA(r- v(t-t2), v, t2). P2Tj*. (16) 

In these expressions the gradient operations P a/J are 
defined by 

(17) 

and act on that function of v and r, on which their 
representative lines in the corresponding diagram end. 

In (15) P l2 acts on the succeeding A vector, whereas 
PIT=Vv - (II-T)VT acts on the last (external) vertex, 
i.e., on the initial distribution function. From now on, 
we will call a vertex representing an A vector (external 
force vector) an A vertex. The diagrams shown so far 
contain only A vertices. A vertex associated with the 
initial distribution function (the external vertex of I) 
will be called an / vertex. The diagrams shown so far 
each contain one! vertex. We now turn to an inspection 
of the contributions resulting from the nonlinear in
tegral term of Eq. (4). The first-order contribution 
caused by the nonlinear integral term is shown in 
Eq. (13). We observe that it may be generated from 
the first contribution (the one represented by an A 
vertex) by replacing A(r-v(t-II), V,II) by 

L ftldt' f d3r'd3v'Bji(r- V(t-II), v, t l ; r', v', t') 
, T 

X!i*(r'-v'(t'-T), v', T). (18) 

Furthermore, we notice that the first set of variables of 
the integral kernel B(r,v,t; r',v',t') is treated in exactly 
the same way as the set of variables of the corre
sponding A vertex. The vector B is also multiplied by 
j*(r'-v(t'-T), v', T). Obviously, the zero-order con
tribution to the distribution function is given by Eq. 
(11). It may be represented by a simple f vertex 

X= /;*(r- v(t- T), v, T). (19) 

We see that in replacing the rvt variables of the zero
order term (19) by the second set of variables r'v't' of 
the integral kernel and then integrating over all phase 
space d3,,' d3v' and over the time t' from T to tl and 
finally sum over all distribution functions i as indicated 
in (18) we obtain an expression, which is mathematically 
completely equivalent to A(r- V(t-tl), v, tl) in as far 
as the further steps of calculation are concerned. A 
diagram which reproduces these facts is 

~x. 
I 

(20) 

A "filled dot" is called a B vertex. A B vertex at posi
tion a is the representative of the following operator: 

The diagram (20) shows a B vertex at position 1. This 
B vertex is connected with an f vertex by a dotted line. 
The meaning of this is now clear. The single f vertex, 
which is connected with the B vertex, contains the 
primed variables r'v't' over which the integration indi
cated in (21) takes place. Therefore, in first order, we 
have two contributions. The first one is familiar from I 
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and is given by Therefore, we have 

The second one is obtained from the first one by re-
~x 

2 
(24a) 

placing the A vertex by and 

e---x 
I 

which is precisely expression (18). Therefore, it is 
given by 

We are now ready to investigate the second-order con
tributions. The corresponding diagrams can only con
tain either two A vertices, two B vertices or one A and 
one B vertex. The diagrams with two A vertices are 
shown in (14). Their contributions are easily obtained 
by using the rules given in 1. The replacing of either 
one or both of the A vertices by a B vertex with at
tached zero-order diagram yields 6 new possibilities. 
They are 

~x 
I 2 

(a)~ 
I 2 

(C)~(.) 

~ (bl~ 'd)~(fl' 
I 2 I 2 

(22) 

As an example, let us write down the contribution re
sulting from diagram (22d). It is 

XL Bji(r- V(I-t2), V,t2; r', v',t')jl(r' - v'(t' - r), v', r) 
i 

XP2T/i*(r-v(t-r), v, r). (23) 

The eight contributions so far considered are not all in 
second order. Actually, there are two more. A B vertex 
may have attached to it (by dotted line) a first-order 
diagram. Since the B vertex counts as first order, the 
B vertex with an attached first-order diagram is of 
second order. Now, there are two first-order diagrams, 

and 

---~ x (24b) 

2 

as possible second-order diagrams. Earlier we gave a 
prescription for an j vertex, which was connected with 
a B vertex by a dotted line. It said: multiply the kernel 
represented by the B vertex with the zero-order dia
gram in which rv and t are replaced by the integration 
variables r'v' and t', and then integrate as indicated. 
Therefore, we suspect that in order to obtain the cor
rect expression for the diagram (24a), for instance, we 
merely have to multiply the integral kernel represented 
by the B vertex with the expression corresponding to 
the first-order diagram in which only the variables rv 
and t are changed into the integration variables r'v' 
and t'. This is true in fact. We call a diagram which is 
attached to a B vertex by a dotted line an internal 
diagram. It is necessarily of lower order than the com
plete diagram. (24) shows the two possible cases in 
which a second-order diagram is constructed by means 
of B vertices and internal diagrams of the first order. 
The internal diagram of (24a) is given by (on replacing: 
already r, v, t by r', v', t') 

t' f dI2Aj(r' - v' (t' -t2), v', 12)' P2T/i*(r' - v' (I' - r), v', T). 
T 

Therefore, this is the expression with which the kernel 
(the B vertex) has to be multiplied. By applying our 
prescriptions to (24a) we see that it represents 

t ft' f f dtlL dt' tPr'tfVB ji (r-v(t-tl),v,tl;r',v',t') 
T 'T 

t' 

X f dt2Ai(r'-v'(t'-t2), V',t2) 
T 

XP2.!i*(r'-v'(t'-r), v', r) 

XPlT!;*(r-v(t-r), v, r). (2S) 

We note here that the expression 

e---rx 
may be considered as a replacement for an A vertex so 
that the rules governing the connection of A vertices 



                                                                                                                                    

116 OLDWIG VON ROOS 

by solid lines as outlined in I still apply in its entirety if 
we replace a simple A vertex by a more complicated 
structure (a B vertex with an attached internal dia
gram). For instance, from the two possible second-order 
diagrams with only A vertices (14) 

~x 
I 2 

~x 
I 2 

we obtain by replacing 

o 
I 

.---~x 
I 2 3 4 

and 

o 
2 

.---~x 
567 

two possible seventh-order diagrams, viz., 

---~x 
I 2 3 4 x. 

If one turns back to diagram (24b) we obtain the ex
pression it represents by noting that the internal dia
gram it contains is given by (13) or 

t t2 1 dt21 dt'!dVd3v'Li:Bji(r-v(t-t2),v,t2;r',v',t') 

XJi*(r' - v'(t'- T), v', T)· P 2TJ;*(r- v(t- T), v, T). 

We only have to replace rvt in the foregoing expression 
by r"v"t", the integration variables of the first B 

vertex of diagram (24b), multiply and integrate thus: 
tl 

f dt"J d3r"dV' ~ Bkj(r-v(t-t1), V,tl; r", v",t") 

Xft"dt2ft2dt' f d3r'd3v' 

XL Bji (r"-v"(t"-t2), V",t2; r', v',t') 

XJ;*(r' - v' (t' - T), v', T)· P2d/(r" - v" (t" - T), v", T) 

to obtain the expression which replaces the simple A 
vertex of the diagram 

~x 
I 

thereby converting it into diagram (24b). 
For the sake of completeness let us illustrate the rules 

of associating any given diagram with its corresponding 
contribution to the distribution function with the 
following example: 

x. 
6 (26) 

This is a six-order diagram which contains 2 internal 
diagrams. It is generated from the simple second-order 
diagram 

~x 
6 

(27) 

by replacing the first A vertex with a B vertex with an 
attached internal diagram of the fourth-order in this 
manner 

o 
I .---t/<2~~:::'\ . 

I 2 3 4 5 (28) 

The fourth-order diagram in turn is obtained from a 
third-order diagram by replacing the third A vertex 
with a B vertex with attached first-order diagram in the 
following way: 

~x 
I 2 3 ~x - ~x. (29) I 2 3 

To write down the contribution to the T distribution 
function J represented by diagram (26) we"have first to 
work out the internal diagram (28). The diagram 

~x 
2 3 4 

(30) 

123 

gives (on applying the rules of I) 

f
t
dt2 ft2dtaft3dt4A(r-v(t-t2)' v, t2) 

T T T 

. P24A(r- v(t- t3), v, ta)· PaTA(r- v(t- t4), v, (4) 

. P4d/(r- v(t- T), v, T). 
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We now have to replace the A vertex number 4 by a 
B vertex with attached first-order diagram 

o 
4 

To do this we write down the first-order diagram 

Therefore, 

is given by (according to Eq. 21) 

I' ' 

X f dt6A(r'-v'(t'-t6), v',t6) 
• 

. P&.'fl(r'- v'(t'- r), v', r). 

This then is the expression which replaces the A vertex 
number 4 in (30). In other words, the complete internal 
diagram (29) is given by 

aj(r, v,t) 

I I fl' fIB = dt2 dta dt4A(r-v(t-t2), V,t2),P24 . ~ ~ 

XA(r-v(t-ta), v, ta)' Pa• f ltdt
' f tldr'dJv' . 

I' 

X~ Bji(r- V(t-t4), v, t4; r', v', t')f dt& 
• • 

XA(r'-v'(t'-r5), v', t&)· Pr..'f.*(r'-v'(t'- r), v', r) 

. P4.j;*(r- v(t- r), v, r). 

Again applying rule (21) this time to (28) yields the 
expression 

Bkj(r-v(t-h), v, h; r", v", t")aj(r",v",t"), 

which replaces the first A vertex of diagram (27). 

Since diagram (27) is given by 

XA(r-v(t-16), v, (6)' P6.fk*(r-v(t-r), v, r), 

we finally find for diagram (26) 

f t fli fit J diagram (26) == dt1 dt6 dt" tldr" tldv" 
• r • 

XL aj(r",v",t")Bkj{r-v(t-t1), v, t1; r", v",t")· P16 
i 

X A(r- v(t- t6), v, t6)' P6.jk*(r- v(t- r), v, r). (31) 

Although we now have a concise idea as to what con
tributions to expect for any given order n we will give 
here a formula for the number N .. of diagrams of order 
n.7 Let n be the order for which we wish to know the 
number of possible diagrams N,.. We then write 

n=ao+2a1+3a2+' .. nan-I, (32) 

and determine all possible ways by which Eq. (32) 
can be satisfied with positive integers a1(1,' • 'an-I, For 
instance, for n=4 we would have the five possible 
solutions: 

ao=4 al=a2=aa=0 

ao=2 a1=1 a2=aa=0 

ao=l al=O a2=1 aa=O 

ao=O a1=2 a2=aa=0 

ao=O a1=a2=0 aa=1. 

If there are M solutions in the general case, we have 
M sets of positive integers a/") (including the zero) 
1 ~E~M. The number N,. is then given by the 
expression 

(33) 

The sum goes over all possible solutions of Eq. (32). 
To give an idea of how rapidly N" increases we list N .. 
for the first few orders. For large n N" goes approxi
matelyas 2" n! 

n 
o 
1 
2 
3 
4 

N .. 

1 
2 

10 
74 

690 

7 The author is grateful to H. Wahlquist for the derivation of 
formula (33). 
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3. APPLICATIONS 

Therefore, although the number of diagrams and the 
number of contributions increases tremendously with 
increasing n there are many cases which can be handled 
advantageously by the diagram method. We will give 
here two examples confining ourselves to the Vlasov 
equation.8 Its linearized version has been treated by 
several authors.9 The Vlasov equation is applicable to 
a moderately low density fully ionized electron ion 
plasma, in which the ions have negligible velocities 
(they form an immovable uniform background of posi
tive charges). Only the electrons are considered to 
move at liberty but again they are slow enough so that 
all effects of retardation for the electromagnetic fields 
are negligible (v/c~ 0). Equation (1) of Sec. 2 becomes 
Vlasov's equation if we drop the index of the distribu
tion function (we only have to worry about the electron 
distribution) and if we put 

e2N r-r' 
B(r,v,t; r',v',t')= --o(t-t') . (34) 

m / r-r'/3 

Here N is the number density of electrons. 
The first problem we are considering here is the 

following: At t= r= 0 a plane polarized light wave is 
switched on. Initially, the electron distribution func
tion j(r,v,t) was maxwellian j*= j* (v) "'e-av'. How 
does the light wave disturb the plasma? 

The light-wave may be described by 

Eext= a cos(k·r-wt) (35) 

with 

a·k=O. (36) 

Vlasov's equation reads then (for t>O) 

(~+v. Vr)f= -~a. V.f cos(k· r-wt) 
at m 

e2NJ r-r' 
-- d3r'd3v' f(r',v',t)· V.j (37) 

m Ir-r'13 

j(l,v,t) for t>O is given by the sum of all possible dia
grams according to Sec. 2. It is immediately noticed 
that a great simplification arises from the fact that the 
initial f is solely a function of velocity. Because then 
all diagrams containing a zero-order internal diagram 
vanish and 

J 
r-v(t-tl)-r' 

e---X = d3r'd3v' f*(v')=O. (38) 
I /r-v(t-tl)-v'[3 

8 A. Vlasov, J. Phys. U.S.S.R. 9, 25 (1945). 
9 L. Landau, J. Phys. U.S.S.R. 10, 25 (1946); N. G. van 

Kampen, Physica 21, 949 (1955); K. M. Case, Ann. Phys. 7, 349 
(1959). 

Without the external force (35) we can write 

j(r,v,t) = , • C,', . ~ ..... /S\ .... (39) 

and we see that all diagrams vanish and the general 
solution is 

f(r,v,t)=j*(v) (40) 

independent of time provided it was only a function 
of velocity initially. Let us now look for the effect of 
the external force switched on at t=O. If the light wave 
is sufficiently small we may neglect all higher order 
terms but the first. In other words, only one A vertex 
representing the light wave Eq. (35) is allowed in any 
diagram. The only diagrams which do not vanish off 
hand to this order [because of (38) ] are 

j(r,v,t)= x • r-. . ~x • ~ ..... (41) 

The actual evaluation is easy enough and we have 

6'x = itdtlA(r-V(t-tl), V,tl),PlTj*(v) 
, 0 

= -~ (dtl cos{k·[r-v(t-tl)]-wtl} 
mJo 

Xa·V.f*(v), (42) 
or 

rX =-~a,v.f*(v)F(k.v,r,t) (43) 
I m 

sin(k· r-wt)-sink· (r- vt) 
F(k·v,r,t) (44) 

k·v-w 

In order to evaluate the remaining terms of the series 
(41) we determine the always occurring combination 

----no 
2 

According to the rules of Sec. 2 we have 

XF(k· v', r', tl)a· V,'f*(v'), (45) 

where F is that part of expression (43) which depends 
explicitly on the scalar product k· v. But by partial 
integration the integral over v' can be converted into 

f d3v'F(k· v', r', tl)a· Vv-f*(v') 

J (dF(U,r',ll») 
= -a·k d3v'f*(v') =0, 

du u=k·v' 

(46) 
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which gives zero by virtue of (36). So we see that to 
1st order only Eq. (42) contributes to 41. In 2nd order 
we would have contributions from the following series: 

rf"x + ((\ + ~ + .... (47) 

The first diagram of (47) vanishes again because of (36) 
andlthe second yields 

~X~~(_~)2{F(k'V' r, t»)2 
J 22m 

X (a·V.)2f*(v). (48) 

If we consider (48) as a possible candidate for an in
ternal diagram we see that by the same reasoning as 
before no contribution arises. This is easily extended to 
all higher orders and we have as solution for J 

J(r,v,t)= J*(v)+ r . . .r?\ . I?A + .•• (49) 

all other diagrams vanish. It is not difficult to sum these 
diagrams up. In fact, the general nth order term is 

itdtlitldt2" . itn-ldtnA(r_ V(t-tl), tl)' V. 

XA(r- v(t-t2), t2)· V.' .. A(r- v(t-tn), tn)· V.f*( v), 

which is simply 

1 { t }n 
n! i dTA(r-v(t-T),T)·V. J*(v). 

Therefore, the series (49) yields 

J(r, v,t) = exp { itdTA(r-V(t- T), T)' V. }f*(V) 

=f*{v+ ~tdTA[r-V(t-T)'TJ}. (50) 

+ 

all other diagrams either vanish or give a higher order 
contribution with respect to ft. For ft let us take 

(56) 

E measures the strength of the anisotropy. Expression 
(56) really is only a Fourier component of the arbitrary 

If we insert expression (42) into (SO) we obtain finally 
the desired result 

J(r, v,t) 

( 
e sin(k·r-wt)-sink· (r-VI») 

=J* v--a . 
m k·v-w 

(51) 

It is easily verified that Eq. (51) is in fact a solution of 
Eq. (37). The second case we are considering here is 
treated several times in the literature.9 It is the follow
ing problem: Suppose that initially the distribution 
function is split into two parts 

f*(r,v,T)= Jo(v)+ft(r,v), (52) 

where the space dependent part ft, is considered small 
compared to the uniform background which we assume 
to be Maxwellian 

(
D!)! m 

Jo(v)= - e-av2 D!=-. 
7r 2kT 

(53) 

The question is: How does the initial disturbance ft, 
propagate in time? Since we do not have any external 
forces the solution is entirely given by diagrams con
sisting of B vertices. We assume furthermore that all 
higher order terms of ft may be neglected. This is 
equivalent to using the linearized version of the Vlasov 
equation. Let us now look at the basic vertex 

e---x. 
From (38) and (52) we see that 

e---x 
f* 

e---x (54) 

f, 

so that only Jl survives as a zero-order internal diagram. 
Therefore, we obtain a complete description of the time 
development of the distribution function through the 
following series: 

(55) + •.•. , 

density fluctuation 

but since the series (55) is linear in Jl we may first sum 
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it and then integrate over k to obtain the result for an 
arbitrary p(r). The particles represented by h are also 
considered to be at rest initially. After some calculation 
it is found that 

~ eWft k· 'V.!o(v) t---x X=4?riE- dtle;k.[r-v(t-t1)] __ _ 

~ { m 0 ~ 
~ 0 ~n 

and in general, 

---~ x 

( 
4?rt?N)nit f tn

-
1 

== -if: ----.;;:- 0 dt l ••• dtn 

X eik '[r-v(t-/t)] (II - t2)g( (tl- t2)k)(t2- ts)g( (~- ts)k) ... 

k·'V.!o(v) 
X (tn-l-tn)g[(tn-l-tn)kJ , (59) 

k2 

where g(k) is defined as the Fourier transform of the 
background distribution function 

g(tk)= f tflv!o(V)eitk,V=exp( - :t2 ) (60) 

from (53). The general expression (59) can be simplified 
considerably by noting that the time integrals are 
nothing else than a number of convolution integrals 
"nested" into each other. If we define the Laplace 
transform of exp( - itk· v) and g(tk) by 

£(eitk . v)= i"'e.te-itk.vdt= (s+ik· v)-l=a(s) (61) 

£(g(tk» = i""e&tg(tk)dt=!3(S) 

(7ra)l {[ (as)l]} 
=-k- exp(as2/k2

) 1-q, -k- , (62) 

we see that the Laplace transform of the general term 
(59) is 

( 
47rt?N)n 

£(Eq. (59))= -iE ----.;;:- eik ·
r 

k· 'V.!o(v) a(s) (2a)n 
X - (l-s!3(s»n-l. (63) 

k2 s k2 

It is therefore easy to sum the Laplace transform of the 
series (55) and the result is 

47rt?N 
£(f-!o-fr)=ie----eik . r 

m 

where we introduced the Debye-Hiickellength 

)-..D= (kT/47re2N)1. 

(64) 

(65) 

Expression (64) can easily be shown to be identical 
with the result obtained by Landau9 and Berz.lO 

10 F. Berz, Proc. Phys. Soc. (London) B69, 939 (1956). 
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Variational Method for Studying the Motion of Classical Vibrating Systems* 
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A quantity Z (essentially the action integral) is shown to be stationary for small periodic deviations from 
the actual motion. By choosing approximations to the motion containing the frequency and some other 
parameters, it is possible to make this variational principle the basis of an approximate determination 
of the motion. 

Quite simple trial functions are found to give surprisingly accurate values for the frequency and the 
Fourier components of the motion. Comparison between the exact solution and ours for some systems 
is given. 

I. INTRODUCTION 

I N recent years, variational techniques have come 
into wide use as a method of obtaining numerical 

results when exact solutions are not available, or not 
convenient for computation. The purpose of this brief 
note is to point out the existence of a very simple vari
ational procedure which is of use in studying the motion 
of a classical vibrating system with one degree of free
dom. The method was developed by Luttinger and used 
by Luttinger and Goodmanl to study a problem which 
arose in the theory of cyclotron resonance for degenerate 
bands. The accuracy of the numerical results obtained 
there was so encouraging that it was thought worth 
while to publish the method independently, along with 
some simple illustrative examples. As is seen from the 
results given below, relatively simple choices for trial 
functions give quite accurate values for the frequency 
and Fourier components of the motion of the system. 
The latter we regard as perhaps the more important 
contribution of the method, since it seems rather 
difficult to get a hold on these coefficients by direct 
means. We may mention that in studying (say) the 
absorption of radiation by such a system, it is these 
Fourier coefficients which playa determining role. 

for the system with Lagrangian L), then Z differs from 
Zo by quantities of the second order. That is, the 
quantity Z is stationary for small periodic deviation 
from the actual motion. 

In Sec. II, the general method is presented, and in 
Sec. III some illustrative examples are given and 
compared with the exact solutions. 

II. GENERAL FORMULATION OF THE METHOD 

Suppose we have a classical system with one degree 
of freedom, which is described by a generalized co
ordinate q. Let the system have a Lagrangian L(q,q), 
where q=dq/dt. Consider the quantity defined by 

Z= iT (L(q,q)+E)dt, (1) 

where E is the energy of the motion and T is the 
period of get). What we shall show is that if q(t), T 
differ by small quantities of first order from qo(t,E) , 
To(E) (the exact solutions of the equations of motion 

* Supported in part by the Office of Naval Research. 
1 J. M. Luttinger and R. R. Goodman, Phys. Rev. 100, 673 

(1955). 

To see this we write 

q=qo+llq. (2) 
Then 

Z= iT (L(qo+llq,qo+llf.jo)+E)dt 
o 

i T ( aLo aLO) 
= L(qo,qo)+--/lq+~q dt+ET 

o aqo aqo 

i T ( [aLO d (aLO)] ) = L(qo,qo)+ --- -. Ilq dt 
o aqo dt aqo 

(3) 

onJusing the Lagrangian equations of motion. We may 
rewrite (3) to the first order as 

i To iT 
Z=· (Lo+E)dt+ Lodt 

o To 

aLo ~TO 
+--/lq +E(T-To) 

aqo 0 

=Zo+ (Lo(t= To)+E)(T-To) 

aLo(t= To) 
+ [llq(To)-llq(O)], (4) 

ago 

where we have used the fact that qo has the periodicity 
To. Clearly, 

Ilq(To) = q(To)-qo(To) = q(T + (To- T»-qo(To) 
=q(T)-qo(To)+q(T)(To- T)+··· (5) 

=llq(O)+qo(To) (To- T)+···, 

121 
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to the first order. Therefore, (4) becomes 

Z= Zo+[Lo-qo(aLo/aqo) +E]t= To(T-To). (6) 

However, the Hamiltonian of the system is given by 

H=q(aL/aq)-L. (7) 

For the exact motion, qo this is conserved and equal 
to E at all times. Therefore, we get 

Z = Zo + second-order terms, 

which we wanted to prove. 
The same method of proof shows that 

Z'= iT (pq-H(q,p)+E)dt 

is stationary in the same sense as Z. 

(8) 

(9) 

The stationary property of (1) or (9) is utilized as 
follows. A guess for the motion q(t) is made. This will 
in general contain an unknown period T (or frequency 
w), and some other parameters Ai. With this choice 
we compute Z. To make the q(t) we have chosen as 
close as possible to the qo(t) , we then choose the 
frequency and the Ai such that Z is also stationary 
under small changes in q, just as it would for the real 
motion. That means that wand Ai are to be determined 
by the conditions that 

az/aw=o (10) 

aZ/r3Ai=O, i= 1,2, .. ·N. (11) 

Equation (10) actually has a simpleland plausible 
physical content. Put wt= x. q= q(wt) = q(x), 

Z= iT (L(q,q)+E)dt 

1 2.-=-i (L(q(x), wq'(x»+E)dx 
w 0 

dq(x) 
q'(x)=-

dx 

az 2'11' li2
11" ( L aL) 

-= --E+- --+-q' dx 
aw w2.£ wow aq 

2'11'[ 1 2" ( aL) ] 
=- -E+-i -L+~ dx 

w2 2'11' 0 aq 

2'11'[ 1 i 2

" ] =- -E+- Hdx =0. 
w2 2'11' 0 

Therefore, going back to time variables, 

liT E=- Hdt=H. 
T 0 

(12) 

(13) 

This means that although the approximate solution 
does not conserve energy exactly, it must be chosen in 
such a way that it conserves energy on the average 
during one period. 

The technique described in the forgoing gives rather 
surprisingly good values for the frequency, using rela
tively simple trial functions q(t). Some insight into this 
may be obtained as follows. From (13) and (7) we have 
at once that 

T aL z=i q-dt 
o aq 

T 

=.£ pqdt 

= iT pdq = f pdq, (14) 

which is just the action integral of the system. Now, if 
we had the exact motion then from the theory of 
action-angle variables, we know that 

aZojaE=2'11'/wo. (15) 

A relationship of the same form holds for the Z, which 
we compute to within second-order terms. To show this 
we first note that Z will be of the form, 

(16) 

On taking the total derivative of Z with respect to Ewe 
obtain, by using (10) and (11), 

dZ az az dw N az dA i 

-=-+--+L:-
dE aE aw dE i=1 aA i dE 

az 

aE 

afl =- -(wpq'(x)-H+E)dx 
aE w 

=~fdx= 2'11'. 
w w 

(17) 

This is quite reasonable since the Z which we compute 
is, for small errors, equal to Zo within second order 
terms and we would expect that w is equal to Wo also 
within second order terms. Therefore, we would expect 
the frequency to be given rather more accurately than 
properties of the system (Fourier coefficients, say), 
and this turns out to be the case. 

III. USE OF THE VARIATIONAL PRINCIPLE 

The Lagrangian or Hamiltonian function characteriz
ing some vibratory motion is given. We wish to find 
approximate values of the frequency and Fourier 
components of the motion. To do this a trial function 
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of wt and one or more amplitude parameters is selected 
which has the approximate form of the exact motion. 
By using this trial function Z is computed and obtained 
as an explicit function of the frequency, amplitude 
parameters, and energy. Z is then made stationary 
with respect to the frequency and amplitude parameters. 
Sufficient relations are thereby obtained to provide an 
expression for each which depends only on the energy. 

Our first concern when dealing with a particular 
problem is the choice of a suitable trial function. Linear 
combinations of harmonic functions of wt will, of course, 
provide an approximation of the motion. If we take our 
initial condition such that the amplitude is zero at 
t= 0 only sines having for their arguments odd multiples 
of wt need be included in any trial function, provided 
the Lagrangian is an even function of q. To see why this 
is so we look at the most general harmonic trial function 
satisfying the )nitial condition q(O) = 0, 

N 

q= L An sinnwt. (18) 
n=1 

At one quarter period, wt=7r/2, q must be zero for a 
symmetric potential. This will be true only if we 
exclude terms in (18) having even integers n. 

Some difficulty may be encountered in performing the 
required integration using harmonic functions. This 
difficulty may in some cases be circumvented by 
making use of a quadratic or even linear trial function 
having the form 

(19) 

q=A (2/7r)wt (20) 

in the first quarter period. We could of course include 
two different amplitudes in the quadratic function. 
We have in fact chosen the constant factors in these 
expressions so that A has the physical significance of an 
amplitude. The method is applied to several simple 
systems. 

1. The Harmonic Oscillator 

The Lagrangian for the harmonic oscillator is 

L=!(ii-q2), (21) 

taking the force constant and the particle mass to be 
unity. After taking the trial function 

q=A sinwt, 
Z is computed to be 

( 1) 27rE 
Z=tA 27r w-: +-:-. 

(22) 

(23) 

If we make Z stationary with respect to A, we find 

az =A7r(W-~)=O' 
aA w 

which implies 

w=1. (24) 

On making Z stationary with respect to wand by using 
(23), we find that 

az = 27r(A2_E) =0, 
ow 2 

which implies 
(25) 

The results (24) and (25) are seen to be exactly correct 
for a system described by the Lagrangian (21). This 
must be so since the trial function (22) has in fact the 
form of the exact solution. 

If Z is computed for the harmonic oscillator by using 
the quadratic approximation (19) 

A2W7r 27rE A2~ 
Z=-+---. 

3 w 30w 
(26) 

The ratio of the period computed from (26) to the 
exact period is very close to one, 1.0064. The first 
Fourier amplitude has the value 1.413 (E)i as compared 
with the exact value (2E)t. 

2. Power Potentials 

The general expression for the exact period of motion 
in the potential 

(27) 
is given by 

T(n) 
4 7r! r(l/n) 

(28) 
(2E)(n-2)/2n n r(l/n+t) 

in terms of the Gamma function for n>O. It is interest
ing to compare the periods predicted by formula (28) 
with those found by the variational method for various 
trial functions. In Figs. (1) and (2) we have plotted the 
percentage error in the period computed for the first 
two harmonic trial functions. Power potentials for n 
up to 4 have been included. If only the first harmonic 
is used the error is less than 1%. The inclusion of the 
third harmonic in the trial function reduces this error 
by a factor of ten. 

FIG. 1. Percentage error 
in the period computed for 
the power potentials V = t I q I n 

by using the trial function 
q=AI sin",t. 

1.0 
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2 
':;0. 

800.3-
~ 0.2 
~ 0.1 
8? 

OJ) n-

Power Pote"tial, V-ll2lql" 

FIG. 2. Percentage error 
in the period computed for 
the power potentials V =! i qi n 

by using the trial function 
q=A, sin",t+A 3 sin3wt. 

Computations for these same potentials were carried 
out using linear and quadratic trial functions (20) and 
(19). Figure (3) shows that the linear approximation 
becomes progressively better as n becomes larger. 
The explanation for this lies in the fact that the linear 
solution is in fact the exact solution in the limit of 
very large n. The quadratic trial function, Fig. (4) 
gives results comparable with those obtained using a 
single harmonic as might be expected from their 
similarity. 

Two cases, n= 1 and n= 00, are of particular interest 
since the motion itself can be obtained in terms of 
functions with known Fourier expansions. For n= 1 
we have just the constant force with the well known 
quadratic dependence on time. In Fig. (5) we have 
plotted the percentage error in the computed Fourier 
components for the first three harmonic approximations. 
The predictions are about 1% or less in error with a 
progressive decrease in error for each component in 
succeeding approximations. 

The limiting case where n approaches infinity is 
also of interest. It is seen that the potential V = lim .. __ 
X t I q I n becomes simply a pair of potential walls. at 
q = ± 1 with V = 0 for I q I < 1. If we again take the first 
harmonic as our trial function 

151-
141-
131-
12r-
111-

~ 101-
i 91-
; at-
e 71-

~ EC-
... ~I

;. 41-.e i 3r-

i 21-
11-

o "a1 naz n-" n-.. 

Power Potential, V= 1/21qln 

(29) 

FIG. 3. Percentage error 
in the period computed for 
the power potentials V =! I q i n 

by using the trial function 
q-A (2/11)",1. 

for arbitrary n. In the limit of very large n, this predicts 
a period 'If/ (E)! and an amplitude A = 1. The potential 
wall problem can be solved exactly to obtain the 
simple linear dependence on time with its well-known 
Fourier expansion. Trial functions containing terms up 
to the fifth harmonic were applied to this problem. 
The percentage error in the components predicted by 
each of these trial functions is shown in Fig. (6). 
The 10% error in the period found after using the first 
harmonic is reduced to about 3% when the 3rd and 
5th harmonics are included. Large errors are to be 
expected when the potential well is treated by using 
only a few harmonics since a Fourier representation of 
the discontinuous motion requires a large share of the 
higher harmonics. The application of all hannonic and 
polynomial trial functions to the power potential leads 
to expressions for the period having the same energy 
dependence as the exact expression (28). This is also 
found to be true for the amplitude expressions. Frac
tional errors involved in these quantities are therefore 
independent of energy. 

,. 
.2 

3. 

l 
" 2.0 

= e 

0.0 "_ "-4 

FIG. 4. Percentage error 
in the period computed for 
the power potentials V -II q I" 
by using the trial functIOn 
q=A (",t-wllI/tr). 

Power Pote"tiDl, V= 1I21ql" 

3. Simple Pendulum 

The exact period of the simple pendulum character
ized by the potential 

V = gl(l- cosO) (30) 
is given by 

T(Oo) = 4(l/ g) IF (71/2, sinOo/2) (31) 

in terms of the elliptic integral of the first kind F(7IJ2, k). 
o is the angular amplitude which determines the energy 
of the system. I is the length of the pendulum and g 
is the acceleration of gravity. 

Z was computed by using two trial function; the first 
harmonic, and the quadratic. In each case we encounter 
a transcendental equation for the amplitude parameter 
which must be solved before this quantity can be 
eliminated in the expression for the period. In Fig. (7) 
we have plotted the percentage errors computed using 
the first harmonic and quadratic trial functions. For an 
angular amplitude 00<71/2, they are seen to be only a 
few parts per thousand. 
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The exact equation of motion for the simple pendulum 
can be expressed in terms of the Sn function by 

8=2 sin-1{kSn(t(g/l)l, k)}, (32) 

where k=sin80/2. It would be desirable to express 8 
as a Fourier sine series, but there does not seem to be 
any elementary way to accomplish this. We can, 
however, take as our variable 

1I=sin8/2, (33) 

as suggested by Eq. (31). The exact equation of motion 
then becomes 

11= kSn(t (g/l) !, k). (33) 

'11 can now be expressed in terms of its Fourier compo
nents by making use of the known expansion of the 
Sn function2 

where 
q=e-rK'IK 

k=sin8o/2= (1-k'2)t 

K =F(7I/2, k) 

K'=F(7I/2, k'). 

3. 

FIG. 5. Percentage error i 
in the Fourier components 2! 
of motion in the poten- ~ 2.0 
tial V = II q 1 using trial 0 

N ~ 
functions q = ~ An sinnwt. .§ 

n-l 0 ... 
n=ith harmonic and N c: 
=number of harmonics .~ 1.0 
included in trial function. ... 

8-
~ 
~ 

(34) 

Go O'O.~n_-.--~-:br--b-..I....:!:-C---

N-I N-2 

"Ve can now proceed in the same manner as before since 
it is evident from (34) that 11 is also periodic. Expressed 
in the variable 11, the Lagrangian for the simple pen
·dulum becomes 

212 (dll )2 
L=-- - -2g1rp. 

1-112 dt 
(35) 

By using the first harmonic as a trial function, Z is 

2 H. Hancock, Theary of Elliptic Functions (John Wiley & Sons, 
;Inc., New York), p. 256. 

i 
ho.o ... 
i 
U2 
.; 
~ 20. 

0.0 n-l 

FIG. 6. Percentage error in the Fourier components of motion 
N 

between infinite potential walls by using trial functions q= ~ An 
n-l 

Xsinnwt. N=number of harmonics taken in trial function. 

found to be 

(36) 
w w 

for the Lagrangian (35). The first Fourier amplitudes 
found from (36) are 0.387 and 0.745 for 80 equal to 
71/4 and 7r/2, respectively. These compare remarkably 
well with the exact values 0.386 and 0.733 computed 
from (34). 

4. Anharmonic Oscillator 

Numerous linear combinations of the various power 
potentials can be formed and treated by our variational 
procedure. One such potential is that associated with 
the anharmonic oscillator. It has the form 

(37) 

where a and (j are constants. The exact period for this 

1.7·,......,-,.......,..-,-..,-,.-,-,-,.-.--,-..,-,.-,-,-,.-.--.--,-.,.-.,--, 

16 
L5 
1.4 

1.3 

1.2 

~I.I 
.~ 1.0 

~0.9 
-= o.a 
·~O.7 
~0.6 
goo.S 
~O.4 
~O.3 -

Go 0.2 

0.1 

00 

FIG. 7. Percentage error in the period computed for the potential 
V(II)=gl(l-cos8) at various angular amplitudes by using the 
trial functions n=</> sin",t and n=</>(",t-,.}t2/1I-). 
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potential can be written as 5. Luttinger-Goodman System 

T(a,(1,E) [2E(:+E)]tG, C~It) 1 As a final example, we wish to treat briefly the system 
(38) having for its Hamiltonian 

where 
a+ (a2+8E(1)i 

It 
4E 

2(1 

Z is the easily computed to be 

27rE aA211" 3 (1A 411" 
Z=tA2w7I+---------

W 2w 16 W 

(39) 

by using the first harmonic asa trial function. (39) yields 
the angular frequency 

[
a 2 ( 9(1E)!]i w= -+--a 1+- . 
3 3 a2 

(40) 

The ratio of the computed to the exact period found 
from (38) is 1.0003 for the case where a=(1=E= 1. 

Another interesting combination 

V=t{a[ql+,Bq2}, 

having the exact period 

4{11" a} T(a,,B,E)=- --sin 1 • ' 

VJ 2 (aL 8E,B)' 

also can be treated by the same methods. 

(41) 

(42) 

The investigation of this and similar systems led 
initially to the development of the procedure presented 
in this note. The exact period for the Hamiltonian (43) 
can be written in terms of complete elliptic integrals. 
of the third kind, but no closed expressions for the 
Fourier components may be obtained. 

By taking for our trial functions 

q=A sinwt 

p=A coswt, 

a Z can be computed, which yields the expression 

for the angular frequency in terms of the elliptic 
integral of the second kind, where 

Note that as in the harmonic oscillator the frequency 
of this system is independent of energy. For the case 
where a= 2V'1, (1=VJ and A= 2VJ, the variational 
angular frequencies are w+=4.9346 and w_=0.7222, 
which bear the ratios 1.0026 and 1.1453 to the exact 
values, respectively. 
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Electrical Conduction in Deformed Isotropic. Materials 
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The current density in a deformed conductor is assumed to be a function of the electric field and the 
deformation gradients. The form of the relationship is restricted by invariance under changes in orientation 
of the. ph~sic~l syste.m. ~ate~al symmetri~s impose further restrictions. The resulting form for isotropic 
matenals IS gIVen. SimplificatIOns are obtamed m the cases of small deformation and large homogeneous 
deformation. Generalizations and further applications are pointed out. 

1. INTRODUCTION 

IN a previous paper! the manner in which constitutive 
equations in continuum physics may be formulated 

is discussed in general terms. In the present paper, we 
apply the procedures of the previous paper to formulate 
constitutive equations for electrical conduction in a 
material which is subjected to an initial deformation. 

We take as our starting point the assumption that the 
current density vector at any instant of time is a 
single-valued function of the electric field and deforma
tion gradients at that instant. We then determine the 
restrictions on the form of the constitutive equation 
imposed by the consideration that it is unaltered by a 
simultaneous rotation of the physical system and the 
coordinate system. The further restrictions imposed on 
the form of the constitutive equation by the assumption 
that it is isotropic and possesses a center of symmetry 
are then determined. 

Next, we consider the manner in which the resulting 
constitutive equation can be simplified by the assump
tion that the deformation to which the body is subjected 
is small. In Sec. 6 we consider the case when the 
deformation is pure homogeneous, but not necessarily 
small. Finally, in Sec. 7, it is pointed out that the 
constitutive equations derived in the paper can be 
applied to other areas of continuum physics than 
electrical conduction in deformed materials, in which 
we are concerned with the dependence of a vector on 
the deformation gradients and another vector. Also, 
it is pointed out that constitutive equations of similar 
form, in which however the scalar coefficients depend 
on time, can be applied to certain classes of time
dependent problems in the continuum physics of 
isotropic materials. However, in all these cases we 
assume that the phenomena with which we are con
cerned are quasi-static in character, so that complicating 
effects due to such phenomena as magnetic induction 
and moving electric currents may be neglected. 

2. SOME FUNDAMENTAL CONSIDERATIONS 

Let us suppose that a body is deformed in such a way 
that a particle initially at Xi in a rectangular Cartesian 
coordinate system x moves to Xi in the same system. 

1 A. C. Pipkin and R. S. Rivlin, Arch. Ratl. Mech. Anal. 4, 
129 (1959). 

Suppose an electric field exists in the deformed body 
with components ei in the coordinate system x, and 
let us assume that the components of the current 
density vector J i in the system X are functions of ep 

and of the deformation gradients axp/axq, thus 

(2.1) 

It follows from the results of a previous paper! that the 
dependence of J i on the arguments axp/axq and ep 
must be of the form 

J i= (axi/aXj)Fj(Gpq, G-i, E p), (2.2) 
where 

Gpq = (axr/axp) (axrjaXq) , G= IGpql 
and 

(2.3) 

If, in (2.1), Ji is a single-valued function of its argu
ments, so is F j in (2.2). If Ji is a polynomial function of 
its arguments, so is F j • 

3. EFFECT OF SYMMETRY 

If the material considered has some symmetry, when 
undeformed and no electric field exists in the material, 
then the functions Fj are subject to further restrictions. 
Let i be a rectangular Cartesian coordinate system 
which, in view of the particular symmetry possessed by 
the material, is equivalent to the system x. We denote 
the components, in the coordinate system X, of the 
current density and electric field vectors by j i and ei, 
respectively. We define Ei and Gij,in a manner anal
ogous to Ei and Gij, by 

Ei= (aij/aJOej and Gij= (aik/aX i ) (axdax j ) , (3.1) 

where Xi are the coordinates in the system x of a 
point with coordinates Xi in the system x. Since the 
transformation relating the reference systems x and 
i is orthogonal, we have 

(3.2) 

Since the coordinate system x is equivalent to the 
system x, we have, from (2.2), 

j;= (axi/aXj)Fj(Gpq, G-l, Ep). (3.3) 

Let the orthogonal transformation relating the co-
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ordinate systems x and x be 

with 

It is easily seen that 

X i= SijXh J k(aX il aXk) = Sijl k (aXjl aXk) , 

Gij=SipSjqGpq and Ei=sijE j. 

From (2.2), (3.3), (3.4), and (3.6), we obtain 

(3.4) 

(3.5) 

(3.6) 

Fi(G pq, G-!, Ep)=SijFj(Gpq , G-l, Ep). (3.7) 

Let 1[;i and Yti be the components in the coordinate 
systems x and x respectively of an arbitrary vector. 
Then, 

(3.8) 

From (3.7), we obtain, multiplying throughout by 
1[;i and employing (3.8) 

1[;iFi(Gpq, G-I;, Ep)=YtiFi(Gpq, G-l, Ep) 
=F(say). (3.9) 

We have, of course, from (3.9) 

F;(G pq, G-l, Ep)=aFlaYti. (3.10) 

NoW (3.9) implies that F is a scalar invariant, under 
the group of orthogonal transformations {S}, say, 
characterizing the symmetry of the material, of the 
vectors YtP and E p, and the symmetric second-order 
tensor Gpq. We note from (3.2) that G-t=G-t. Thus, F 
must be expressible as a polynomial in G-t and the 
elements of an integrity basis, under the transformation 
group {S}, for the vectors YtP and Ep and the symmetric 
tensor Gpq. Since F is linear in the components of the 
vector YtP' we may express it in the form 

M 

F= L PnAn, (3.11) 
n~1 

where An(R= 1,2,· .. ,M) are the elements of the 
integrity basis which are linear in the vector YtP and 
P R (R=1,2,·· ·,M) are polynomials in G-l and the 
elements of the integrity basis which do not involve 
the vector YtP at all. 

4. ISOTROPIC MATERIAL POSSESSING A 
CENTER OF SYMMETRY 

If, when it is undeformed and the field strength is 
zero, the material is isotropic and possesses a center of 
symmetry, the appropriate transformation group 
expressing its symmetry is the full orthogonal group. 
The elements of an integrity basis for the vectors YtP 
and Ep and the symmetric tensor Gpq, which are linear 
in YtP' may be taken1 as 

(4.1) 

'Those which are independent of the vector YtP may be 
taken as 

EpEp, EpGpqEq, EpGpqGqrEr, 

Gpp, GpqGqp, GpqGqrGrp. 
(4.2) 

On replacing An(R= 1,2,· .. ,M) in (3.11) by (4.1), 
we obtain 

F=PlYtpEp+P2I/;pGpqEq+PaYtpGpqGqrEr, (4.3) 

where PI, P 2 and P a are polynomials in the quantities 
(4.2) and C-t. 

On introducing (4.3) into (3.10), we obtain 

Fj(G pq, G-l, Ep)= (Plajk+P~jk+PaGjpGpk)Ek. (4.4) 

On introducing (4.4) into (2.2) and bearing in mind 
the definitions (2.3) of Gpq and E p, we obtain 

li= (P~ij+P~ipgpj+P3gipgpqgqj)eh 

where gij is defined by 

gij= (axilaXk)(axjlaXk ). 

(4.5) 

(4.6) 

We now use the Hamilton-Cayley theorem for the 
matrix g= Ilgijll. This may be stated as 

gL etrg+!C (trg)L trg2]g- t[ (trg) a 

-3trglrg2+2trg3]I=0, (4.7) 

where I is the unit matrix. We bear in mind that 

and that 

trG=trg, trG2=trg2, trGB=trg3 and G=g, (4.9) 

where 
(4.10) 

On employing (4.7) to (4.10) in (4.5), we see that 

(4.11) 

where aij denotes the Kronecker delta and Ql, Q2 and Q3 
are polynomials in (4.2) and G-t. 

If we use (2.3) and (4.6), we note that 

and (4.12) 
EpGpqGqrEr= epgpqgqrgr8e •. 

If we use (4.7), we see that EpEp, EpGpqEq and 
EpGpqGqrEr are expressible as polynomials in 

trg, trg2, trga, 
(4.13) 

With this result and (4.9), we see that, in (4.11), 
Q1, Q2 and Q3 are expressible as polynomials in g-! and 
the quantities (4.13). 

By using the vector notation J and e for the current 
density and electric field strength, respectively, Eq. 
(4.11) may be rewritten as 

(4.14) 
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and the quantities (4.13) may be written as 

trg, Irg2, trg3 
ee, ege and eg2e. 

(4.15) 

If the conduction is ohmic, then in (4.14) Ql, Q2 and 
Qa are polynomials in rt, trg, trg! and trgB only. 

Another special case arises if we consider the body to 
be undeformed, so that giJ=Oij. We then obtain, from 
(4.11) 

Ji=Qe;, (4.16) 

where Q is a polynomial in epep. This is the law govern
ing nonohmic conduction in an undeformed isotropic 
material. 

s. SMALL DEFORMATIONS 

Let U; be the displacement components in the 
coordinate system x undergone by the body in the 
deformation. Then, 

(5.1) 

If we make the assumption that the displacement 
gradients are small compared with unity, then substitut
ing from (5.1) in (4.6) and neglecting terms of the 
second degree in the displacement gradients, we obtain 

(5.2) 
where 

Eij=!(iJU;jiJXj+iJUj/iJXi ). (5.3) 

After introducing (5.2) into (4.11) and (4.13), it is 
easily seen that 

J;= (RlOij+R2Eij+RaEikf:kj)ej, (5.4) 

where R l, R2 and Ra are expressible, with the notation 
E= IIEijll, as polynomials in 

IrE, trE2, IrEa, 

epep, epEpqeq, epEpQEqrer. 
(5.5) 

If we make the more stringent assumption that (5.4) 
can be linearized with respect to the displacement 
gradients, we obtain2 

J;= [(Sl+S2Ekk+SaepEpqeq)o;j+S4E;;]ej, (5.6) 

where Sl, S2, Sa and S4 are expressible as polynomials 
in epep. If the conductivity is ohmic, Sa=O and Sl, S2 
and S4 are constants. 

6. THE CASE OF PURE, HOMOGENEOUS 
DEFORMATION 

If the deformation to which the body is sUbjected is 
a pure homogeneous deformation with principal 
directions parallel to the axes of the coordinate system 
x, then the deformation may be described by 

Xl=AlXI, X2=A2X 2, Xa=AaXa. (6.1) 
----

2 We note, as an example, that (5.4) may provide a good ap
proximation for J;, while (5.6) does not if oi;«1 while R3»R2• 

We obtain, from (4.6) 

gll=A12, g22=A22
j g33=Aa2 

and gij=O (i~ J). 

By introducing (6.2) into (4.11), we obtain 

J 1= (Ql+Q2A12+QaA14)eh 

J 2= (QI+Q~22+QsA24)e2 
and 

(6.2) 

(6.3) 

QI, Q2 and Qa are, or course, polynomials in the quanti
ties (4.13). We shall denote these quantities in the 
order in which they appear in (4.13) by al, (\(2, ... , a6. 

Expressions for these quantities in the case when the 
deformation is pure homogeneous may be obtained by 
introducing (6.2) into (4.13). 

For simplicity we shall first consider that the conduc
tion is ohmic. Then QI, Q2 and Qa are polynomials in 
al, a2 and aa only; which are given by 

and 

al=trg =AI2+X22+A}, 

a2= trg2= AI4+A24+Aa4 

aa= trga= A16+A26+Aa6. 

{6.4) 

We may in principle determine completely the depend
ence of Ql, Q2 and Qa on ai, a2 and aa in this case by 
performing the following experiments. For a given pure 
homogeneous deformation, and hence, from (6.4), for 
given values of ai, a2 and aa we measure the ratio!> 
J 1/el, J 2/e2 and Ja/ea, i.e., the resistivities in the three 
principal directions. We thus obtain, provided AI, A2 
and Aa are all unequal, three independent simultaneous 
equations for the determination of the values of QI, Q2 
and Qa corresponding to these values of ai, a2 and aa. 
This experiment may then be repeated for various 
values of ai, a2 and aa. 

7. APPLICATION OF THE RESULTS TO OTHER 
PHYSICAL PROBLEMS 

The constitutive equations obtained in the preceding 
sections are applicable to other physical problems than 
those concerning electrical conduction in deformed 
materials. For example, by interpreting the vectors 
J and e in (4.14) as the heat flux vector and temperature 
gradient, respectively, in a deformed material, we obtain 
a constitutive equation for thermal conduction in a 
deformed isotropic material possessing a center of 
symmetry, in which the "thermal conductivity" 
depends on the deformation at the instant of measure
ment. By interpreting J and e in other ways, Eq. (4.14) 
may be applied to the description of other physical 
phenomena than electrical or thermal conduction, 
which involve a relation between a vector on the one 
hand and a second vector and the deformation gradient!> 
on the other. 
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We now consider that a body is deformed at time 
t=O and is then held in a constant state of deformation. 
Simultaneously, an electric field is applied. We assume 
that the current density vector J at time t depends on 
the field e, the constant deformation gradients axp/axq 
and the time t after the deformation is applied, thus 

(7.1) 

Then, proceeding in a manner similar to that adopted 
in the preceding sections, we see that if the material 
is initially isotropic, the current density vector J must 
be expressible in the form (4.14), where Ql, Q2 and Q3 
are functions of the quantities (4.15) and of t. 

We now consider a material in some state of deforma
tion and assume that the current J in it at time t is a 
polynomial function of the deformation gradients and 
electric field at time t and is a continuous functional of 
the electric field e(T) in the interval O~T~t. We now 
suppose that e varies with time in some specified 
manner, so that 

e(T)= f(T)e*, (7.2) 

where e* is independent of time and f(T) is a specified 
function of time. If we follow an argument outlined 
in a previous paper3 and the analysis given' in the 
present paper, it can be shown that provided we limit 
ourselves to situations for which e varies in accordance 
with (7.2) the constitutive equation may be written 
in the form 

J = Qle*+Q2ge*+Q3g2e*, 

where Ql, Q2 and Q3 are polynomials in 

trg, tr~, trg3, g-!, 

e*e*, e*ge* and e*~e*, 

and are single-valued functions of t. 
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The convergence of the iterated Born series for the Green's function in nonrelativistic potential scattering 
is studied in n dimensions, thus generalizing a recent study of Zemach and Klein. For spherically sym
metrical potentials the series is proved to converge at sufficiently high energies for a rather general class 
of potentials. 

I. INTRODUCTION 

A SIMPLE proof of the convergence of the Born 
Series for the scattering of a particle by a potential 

in nonrelativistic quantum mechanics was given in a 
rrevious paper by Klein and Zemach1 for a rather 
general class of potentials. Our purpose will be to 
extend this proof to a particle with n spatial dimensions. 
While the problem considered is largely of academic 
interest, one is nevertheless able to illustrate several 
interesting properties of the Born expansion, and to 
gain further insight into its structure. The authors 
intend this effort to serve as a preliminary to the 
investigation of physical problems involving many 
dimensional Green's functions, for example, neutron
deuteron scattering. In the integral formulation of the 
scattering problem, a wave function .p(r) is sought 
which satisfies 

.p=.po+GoV.p, 
=.po+GV.po, (1) 

follows directly. It is useful to introduce an associated 
set of functions 

go(r,r')= 1 

gn(r,r') = Gn(r,r')/Go(r,r'), 

g(r,r') = G(r,r')/Go(r,r'), 

and to consider in place of Eq. (5) the series 

00 

g(r,r')= L gn(r,r'). 
n~ 

With the notation 

D r •r , (s) 
Go (r ,s )Go (s,r') 

Go(r,r') 

Eq. (7) assumes the form 

(8) 

(9) 

(10) 

gn+m+l(r,r')= J gn(r,s)Drr,(s)Vgm(s,r')ds. (11) 

where the (outgoing wave) Green's function G(r,r') A norm may be assigned to the function g as follows: 
obeys the equation 

G=Go+GoVG. (2) 

The Born series is defined by iteration of Eqs. (1) 
and (2) 

00 

.p= L .pn (3) 
~ 

QO 

G= L Gn , (4) 
~ 

where 

.pn+l(r) = f Go (r,s) V (S).pn(s)ds (5) 

and 

Gn+l(r,r')= f Go(r,s) V (s)Gn (s,r')ds. (6) 

From the last equation the more general relation 

Gn+m+1(r,r')= f Gn(r,s)V(s)Gm(s,r')ds (7) 

* N. S. F. Predoctoral Fellow. 
t Supported in part by the U. S. Atomic Energy Commission. 
1 Ch. Zemach and A. Klein, II Nuovo cimento 10, 1078 (1958). 

Ilgill = max I g;(r,r') I , (12) 
r,r' 

i.e., the norm Ilgil! is the maximum numerical value 
obtained by g,(r,r') as rand r' vary. The norm is well 
defined for any function of two variables and is either 
a nonnegative real number or infinity. We shall consider 
only spherically symmetric potentials which satisfy 
certain conditions at the origin and infinity. From 
Eq. (11) we obtain 

gl(r,r')= f Dr,r,(s)V(s)ds. (13) 

The general form of Go (outgoing) for p+2 dimensions 
is2 

G(r) =~(~) P (:r) P/2H p/2(1) (kr)/ipr(~), (14) 

where n is the solid angle in p+2 dimensions, r the 
gamma function, and H(l) the Hankel function. From 
the foregoing relations it follows directly that if Ilgill is 
to be less than infinity, our potential must satisfy the 

131 

2 A. J. Sommerfeld, Partial Differential Equations in Physics 
(Academic Press, Inc., New York, 1949), p. 232. 
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following conditions: At the origin, we require that 

for p= -1, I V(r) I <c/r1-l1, ~>O 

for p~O, IV(r)l<c/rH , 11>0; 

At infinity we demand that 

I V(r) I <c/(r)(1>+3)12+11, 11>0. 

II. SIMPLE POTENTIALS 

(15) 

(16) 

All proofs are simplified in the case of an odd number 
of dimensions because of the well-known fact that the 
HankeUunctions of half-integral order can be expressed 
in terms of trigonometric functions. For this reason 
we will specifically exhibit a proof for the case of five 
dimensions. However, in Appendix A it will be shown 
that our work can easily be extended to any number of 
dimensions. From Eq. (14) it can be seen that the 
one-dimensional problem (p= -1) is completely trivial, 
since each succeeding term in the Born series is multi
plied by a higher inverse power of k. For the familiar 
three-dimensional case, where 

1 eiklr-r'l 
GO(3)=-----, 

4?r Ir-r'l 
(17) 

a rather more elaborate analysis was necessary. We 
shall attempt to generalize the reasoning now to five 
dimensions where the fact that 

1 
GO(5) (r,r') = 

8rlr-r'13 

X[eiklr-r'l-ik I r-r' I eiklr-r'l] (18) 

involves a positive power of k brings in additional 
complexities. 

In this section we restrict ourselves to simple 
potentials defined. precisely by Eqs. (19) and (20) 
below. The extension to potentials of actual interest 
will be given in Sec. III. 

The first step in the proof involves the investigation 
of the behavior at large k of gl(5)(r,r') and g2(5)(r,r'). 
Let a function !.(s) be defined by 

!.(s) = 1 if lsi <S 
=0 if lsi ~S. (19) 

When yes) is a simple potential, constants S, M 1, 

M 2, M 3, ... can be found such that for all S 

I yes) I:::; MI/.(s) 

/V'iV(s)1 :::;M2!.(s) 

I V'tV'jV(s) I :::;Ma!.(s) 
(20) 

In Appendix B it is proved that for the case of simple 
potentials, given E>O, there exists a ko, such that if 
k~ko, I gl(6)(r,r')I <E and I g2(6) (r,r')I <E/k independ-

ent of the values of rand r', i.e., IIgI(S)II <E and Ilg2(5)ll 
< e/ k. Let us now define 

11V1I=~~:c J IDr,r,(s)IIV(s)lds. (21) 

According to Eqs. (10) and (18) II VII Is proportional 
to k. From Eqs. (11) and (12) we obtain 

IIg3n(6)II :::; (lIg2(5)lIllVll)n 

IIg3n+l(6)1I:::; (/lgl(5)11)(lIg2(5)III1VII)n (22) 

IIg3n+2(5) II :::; <llg2(5) II) <llg2(5) 1111 VII) n. 

We may now conclude that the Born series for simple 
potentials 

00 00 

g(5) (r,r') = L g3n (6) (r,r')+ L g3n+I(6) (r,r') 
W=() n-O 

Q() 

+ L gSn+2(5) (r,r') (23) 
W=() 

converges uniformly and absolutely for sufficiently 
large k. 

We remark that by examining the form of the 
Hankel functions we see that all previous arguments 
remain valid if k is allowed to represent a complex 
variable k=x+i71 with n~O. Thus the Born series for 
the Green's function (for the case of simple potentials) 
converges uniformly and absolutely in the upper half 
k plane when Ikl is sufficiently large. We shall restrict 
ourselves in what follows, however, to real positive k. 

By using the foregoing results, as in the previous 
paper,3 one can now define a scattering amplitude and 
show that the Born series for the wave function 
converges at sufficiently high energy. 

III. EXTENSION TO N DIMENSIONS AND 
NONSIMPLE POTENTIALS 

For the simple potential we may write 

gl(n) (r,r') = J Go(n)(kl r-sl )V(s)Go(n)(k I s-r' I )ds, (24) 

where in n= p+2 dimensions Go(n) is given by Eq. (14). 
In the appendix it is proved that for sufficiently large 
k one may replace the Hankel function in Eq. (14) by 
its asymptotic form 

H.(1) (p)] ... ymp= (:pf e[ip-lilr(.H)], (25) 

if at the same time one replaces the simple potential V 
by an effective potential V' which is still simple. In so 
doing, an error is introduced in glen) of magnitude less 
than E. 

3 Ch. Zemach and A. Klein, II Nuovo Cimento 10, 1078 (1958). 
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Upon the foregoing replacements one finds that in 
all dimensions the integral in Eq. (24) will have essen
tially the same form as the example calculated for the 
case of five dimensions in Appendix A. The basic 
proof given there will follow through with the following 
modifications: In 2n+ 1 and 2n+ 2 dimensions (n= 1,2, 
3· .. ) we need n integrations by parts to bring down 
enough powers of k to prove the necessary the
orems. If one examines the form of the volume ele
ment, the limits of integration and the form of the 
potential, one sees that the properties of the scale factors 
in n dimensions insures that the first n-1 integrations 
by parts yield no boundary terms, and that all integrals 
converge. 

Real potentials can now be included within the 
framework of the previous arguments in the following 
manner: 

In n = p+ 2 dimensions define 

f 
I V(s) I 

IvO(r) = ---ds, 
Ir-slp 

f I V'V(s) I 
Ivl(r) = ds, 

. Ir-slp-l 

. f 1V'1V'2" 'V'p-lV(s)I 
I vP-l(r) = ds. 

Ir-sl 

(26) 

Suppose that for a given real potential V (s), the 
function Ivi(r) as defined foregoing (j=l, 2·· .p-l) 
satisfies the three requirements 

Ivi(r) < 00 for all r 

Ivi(r) is continuous in r (27) 

I vi(r) ,,-,0 (l/r) as r ---t 00. 

It then follows that V(s) can be approximated by a 
simple potential in the sense that given f>O, a simple 
potential U(s) can be constructed such that4 

(28) 

If gl(5) (r,r' ), g2(5) (r,r') and !'h(6) (r,r'), Y2(6) (r,r') denote 
the first- and second-order g functions for V and U, 
respectively, it will be proven in Appendix C that 
given f>O there exists a ko such that for k~ ko 

and 

(29) 

4 See, for example, the methods of E. C. Titchmarch, Theory 
of Functions (Oxford University Press, New York, 1939), Chap. 
X and Sec. 12.2. 

Now let 
gl=!h+gl-Yl 

g2=Y2+g2-Y2. 

In Appendix B it is proved that 

Igll <f 

Ig21 <£/k. 

(30) 

(31) 

The convergence of the Born series for real potentials 
of the class specified in five dimensions now follows 
from Eqs. (22) and (23). 

It is interesting to note that for the case of three 
dimensions it is necessary to prove only that I\gll\ < f 
to prove convergence of the Born series for the Green's 
function, whereas for the case of five dimensions we 
have found it necessary to show explicitly that both 
Ilglll < f and IIg211 < £/ k before being able to show the 
convergence of the series. In fact, one sees in general 
that for the case of 2n+ 1 and 2n+ 2 dimensions 
(n= 1, 2···) one must first show explicitly that 

I\glll<f, Ilg211<£/k,"', I\gnll< f/kn
-
l 

before one can obtain an iteration formula to prove 
that the entire series converges. Our methods are then 
applicable to the general case. 

APPENDIX A 

We show here that, whereas the previous proofs seem 
manifestly simpler for the case of an odd number of 
dimensions, and seem to vary radically from dimension 
to dimension, all dimensions can be treated in approxi
mately the same manner. Although the proof that we 
shall exhibit will be for the calculation of gl (r,r') in 
four dimensions only, it will be clear that the general 
principle can be applied to all quantities of interest in 
an arbitrary number of dimensions. 

We recall that 

gl(4)(R, R/) 

=~(~)lf Hl(l)(kl R-SI )Hl(l)(kIS- R/) 

3ig 2 Hl(l)(kIR-R/I) 

I R-R/I V(s) 
X ds (A1) 

I R-SIIS-R/I ' 

where V(s) is a simple potential. We will now prove 
that, given f>O, for k>ko we may replace Hl(l)(p) 
by Hl(l)(p) asymp. [see Eq. (25)J, if at the same time 
we replace V(s) by a suitable effective simple potential 
V'es). In so doing the error introduced in gl(4) is of 
magnitude less than E. 

In order to smooth the way for the following proof 
let us first establish an upper bound for IH.(l)(Z) I for 
I Z I ~ A. From the definition 

H/1) (Z) = J.(Z)+iH.(Z) (A2) 
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since I J.(Z) I ~ C. in the region under observation, we 
see first that 

I H.(l) (Z) I ~ C.+ I N.(Z) I. (A3) 

We next recall the expansion for the Neuman function 

2 
N.(Z)=-h+log(!Z)}J.(Z) 

'If' 

1>-1 (v-r-1)!( 2 )1'-2r 
-- L - +g.(Z), (A4) 

'If'r-O r! Z 
where 

1 <Xl (Z/2)·+2r 
g.(Z)=-- L (-l)r---

11' 1'=0 r! (v+r) ! 

(
1 1 1 1 ) 

X 1+-+·· ·-+1+-+···- . (AS) 
2 r 2 v+r 

One can readily establish that 

<Xl /zr Z>+r v+2r/ 
Ig.(Z) I ~ L ----- ~ le2z l· 

r-O r! (v+r)! 2,+2r 
(A6) 

If we use the triangle inequality and combine the 
foregoing results, we obtain for I Z I ~ A 

I H.(l) (Z) I ~ F.(A)+yC.llog(!Z) I 

+ L -, (A7) 
.+1 (v-r-1)/2/,-2r 

r-O r! Z 
where 

If we turn then to the integral (Al) we break up the 
region of integration into three subregions 

where V 1 is a sphere of radius 0 about the point R, 
and V2 is a similar sphere about R'. We then consider 
two cases IR-R'I~2(j and IR-R'I<20. For the 
first case let k=A/o, where 

We first examine the integral over V 1 

where we have made the transformation 

and 

u=S-R 

du=ds 

(A9) 

(All) 

H1(kIR'-SI) IR-R'I 
feu) V(u+R). (A12) 

H1(kIR-R'I) IR'-SI 

In Vd(u) is bounded, continuous, and differentiable 
to all orders, i.e., If(u) I <Bo, If'(u)1 <B1, .... From 
Eq. (A7) it now follows that 

Ig1(V1) I ~~~(~rf dn 

X ~6 U[F1(A)+C1'Y log!ku+ k:]dU. (A13) 

After performing the integration in Eq. (A13), we see 
that 

Ig1(V1) I <Dt/k, where D1=D1(A). (A14) 

Likewise, it can be shown that 

(AIS) 

Now let us consider gl (V - V 1- V 2)' Because of 
Eq. (A9), H1(X)/H1 asym(x) and H'l asym(x)/H1(X) 
are bounded and differentiable to all orders for I x I ~ A. 
If we rewrite 

k (1I')lf H1 asym(kl R-SI)H1 asym(kIS- R'I) I R-R'I 
gl(V- V1- V2)=- -

3ill 2 V-V1-V2 H1asym(kIR-R'DIR-SIIS-R'1 

{ 
H1(kIR-SI)H1(kIS-R'I)H1asym(kIR-R'I) } 

X V(s) ds (A16) 
H1 asym(kl R-SI )H1 asym(kIS- R'I )H1(kl R- R'I) 

and treat the function in curly brackets as the new 
effective simple potential V'(s), since V'(s) is still a 
simple potential we may show in the same way as for 
five dimensions that Ig1(V-V1-V2)I<constant/k. 
Thus, given E> 0 for k ~ ko we can make I gll < E as 
seen from Eqs. (A14)-(A16). 

For the case I R-R'I <25, the region of integration 

is broken up as follows: 

where V 1 is sphere of radius '11 surrounding R', and V 2 is 
sphere of radius 35 surrounding R, but excluding V 1. 
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We choose 7}= t I R - R/\. In exactly the same manner 
as in case I we can show that the integral over the 
sphere of radius 7} is proportional to 11k. For the 
large sphere of radius 30 

k (11')! 36 
gl(R,R/)=- - f u2duH1(ku) 

3iQ 2 0 

L
IlZ(U) 

X dQf(u) , 
IlI(u) 

(A18) 

where 
H1(kl R/-SI) I R-R/I 

feu) V(u+ R). (A19) 
H1(kIR/-RI)IR-SI 

The use of the geometrically obvious relation 
IR-R/I/IR/-SI:::;2 shows that feu) has the same 
desirable properties as in case I, and we can again 
show that this integral is proportional to 11k. The 
remainder of the proof for this case follows through as 
before. Now choosing ko to be the larger of the two 
values required for the individual cases, we have the 
desired result. 

APPENDIX B 

We shall prove here for the case of a simple potential 
that given E> 0, there exists ko such that if k ~ ko, then 
I gl(6)(r,r') I <E independent of rand r', i.e., IlgI(6)I\<E. 
Following that we show that Ilg2(6)11 < Elk. 

Becaus€ the integral for gl(6) (r,r') is absolutely 
convergent, we may express it in hyper-spheroidal 
coordinates defined by 

Xl=A~7} 

x2=A[(r-l)(1-~)]t cosO 

x3=A[(r-l)(1-~)J! sinO COS<Pl (Bl) 

X4= A[ (r-l) (1-7}2)J! sinO Sin<Pl COS<P2 

X6= A[(r-l) (1-7}2)J! sinO sin<Pl sin<P2, etc., 

or expanding Eq. (BS) 

where 
1 I V(s)eik[lr-BI+ls-r'I-lr-r'll 

gla(6)=-- dSi--------
811' (1-iklr-r/ l) 

Ir-r'13 
X-----

Ir-s131 r'-sI3 

1 f V(s)eik[lr-sl+IB-r'l-Ir-r'lliklr-sllr-r'13 
glb(6)=- dSi--------------

811' (1-iklr-r'\)lr-sI 3Ir/-sI 3 

1 I V(s)eik[,r-s,+,s-r'l-Ir-r"Jiklr'-sllr-r'13 
gle(·) =- dsl--------------

811' (1-ikl r-r/l) I r-s1 31 r' -S13 

1 f· V(s)eik[,r-s,+,r'-sl-lr-r'llk2Ir-r'12 
gd6) =- ds . (B7) 

811' (l-ik I r-r/l) I r-s121 r' -S12 

Introducing the hyperspheroidal coordinates, for 
large k let us study, for example, 

(B8) 

After integrating I by parts with respect to ~, we obtain 

I = IdQIdl1(1-~)[_1_V(~,7},Q) (r-1)e2ik~eJoo 
2iM (r-~) 1 

+_1_ foo d?[(V(~,7},Q»( r-l)]e2ik~e. (B9) 
(2iM) 1 a~ r-7}2 

where 
A= Ir-r/1/2 

~=(lr-sl+ls-r'I)/2A, 1:::;~<0Cl 

When Eq. (16) is used, the integrated term vanishes 
at both limits, and we may now integrate by parts once 

(B2) more to increase the power of k in the denominator. 

7}=(lr-sl-ls-r' I)/2A, -1~7}:::;1 

and 0, \01 and <P2 are spherical coordinates such that 

0:::;0:::;11', 0:::; <PI:::; 11', 0:::; <P2:::; 211', (B3) 
and 

ds= A6(r-7}2) (1-7}2) (r-1) 
Xsin20 sin<pld~d7}d8d<pld<p2. (B4) 

We study the integral 

gl(6) (r,r/) = -~J dsV(s)eik[lr-BI+IB-r'l-Ir-r'll 
811' 

(l-ikl r-sl )(1-ikl r/-sl) I r-r' 13 
X (BS) 

(l-ikl r-r'l) I r-sI 3Ir'-sI3 

We finally obtain 

I glP) I :::; ak (r,r') +.Bk (r,r') +'Yk(r,r/) 
+ok(r,rl)+Ak(r,r' ). (BlO) 

Let us now treat each term of Eq. (BI0) in detail. 
We have 

ak=~ I dQ II d7} V(l,7},Q)~iM. (Bll) 
k -1 

~= 1 corresponds to a line integral along the vector 
r=r'. We will obtain contributions only from that part 
of the integration region which is inside the potential 
sphere I s I :::; S . We select a number R so large that if 
both r~R and r/~R, then gl(r,r/) as given by Eq. (BS) 
is less than E in magnitude for all k. (That such a 
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choice is possible can be seen by examining Eq. (BS) 
after integrating by parts once.) We consider therefore 
only the interesting case where at least one of the 
variables, say r', is less than R. From the inequality 

2(a-a1/)= I r-r'l + I r'-sl-I r-sl 
:::;2Ir'-sl :::;2R'+2S, (B12) 

we infer 
a1/~ a- (R'+S). (Bl3) 

Hence, in Eq. (Bll) the range of 1/ is effectively limited 
by the inequality 

l~1/~ l-a-I(R+S). (Bl4) 
Thus 

(BlS) 

We next consider 

(Bl6) 

(Bl7) 

(Bl8) 

With the definition f.(s) = f.a,1/)f.(fJ.) , we find upon 
substitution of Eqs. (20) and (Bl8) 

4aM~ I '" 

li3kl :::;-- f d1/f f.(~,1/)ds~. 
k -I -I 

(Bl9) 

As ~ varies from 1 to co for fixed 1/ and 0, the vector 
s~ traces out a hyperbolic path beginning somewhere 
on the straight line segment running from r to r'. The 
total length of this are, which is intercepted by the 
sphere Isl:::;S depends on the position of rand r', but 
in any case never exceeds a circumference 27rS. Hence, 
in view of Eq. (Bl9) we obtain 

(B20) 

We now treat 'Yk, where 

in the same way as 13k, except that (r-1)1(1-1/2)la 
is included with the 0 integration to give an additional 
line integral to be considered. Since 0 is a spherical 
coordinate, we are interested in an arc of a circle cutting 
the potential sphere. This will be less than the circum
ference of a great circle of the potential sphere. Thus 

If we define 

f.(s) == f.(O)f.(~,1/) == f.(O)f.(~)f.(1/), (B24) 

we have 
4M 10 f'" 4M 10a~]h 

I(hl :::;-a dH.W , 
k I k h 

(B2S) 

where ~2 and h are the curves of constant ~ which bound 
the potential sphere. We thus have 

a(~2-h)=H I r-s21 +r'-s21 
-lr-sll-lr'-sl[):::;ls2-sll:::;2S (B26) 

since Sl and S2 are points on the surface of the sphere. 
Finally, we obtain 

(B27) 

To conclude the proof we must study the integral 

~2 
X e2 ikil(E-I). (B28) 

Cr-V)3 
Now 

After noting that 
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and 

(B32) 

and applying the previous reasoning, we find that 

The remaining contributions to gl(f» can be treated 
similarly. 

In order now to prove that Ilg2(6)11 < (elk) for k~ko 
we follow again essentially the same argument as that 
just given. We have 

x f'" d~F(~,T/,n)e2ikll(H)g(~,T/,n)k J dn' 

X 11 dT/'f'" d~'F(e,T/',n')e2ikll'(e-l), (B34) 
-1 1 

where 

Integrating by parts twice with respect to ~ and 
bounding the result, we find 

I l f'" (F
fl

g+2g'F'+Fg
fl

) \ 
- dT/ d~------

-1 1 .12 

where a prime represents differentiation with respect to 
~. Note that V(e,T/',n')/e2 is a simple potential. The 
second factor enclosed by absolute value signs is then 
of the form already treated in the study of gl(f» and is 
therefore known to be less than e for k sufficiently large. 
The first factor can be shown to be bounded by similar 
arguments. Together it is possible to conclude the 
result IIg211 < elk. 

APPENDIX C 

We now wish to prove the following statement. 
Given e>O, there exists a ko such that for k ~ ko 

IY1-{111 <e 

IY2-g21 <elk 

(C1a) 

(C1b) 

under the conditions on the potential stated in (1.16) 
and (3.4). The proof is given for the now familiar case 
of five dimensions, the generalization to higher and 
lower dimensions being obvious. First consider I yd6) 

-gld(a) I after having integrated by parts once 

I Yld(6)_gld(f» I = I YlA(6)+Y1B(6) I 
~ I YlA (f» I + I Y1B(6) I, (C2) 

where 

One now introduces five-dimensional spherical co
ordinates as follows: 

Xl =S' cosa, O~ S' < 00 

X2= s' sina cosO, 0 ~ a ~ 71' 

X3=S' sina sinO COSCP1, O~O~7I' (C5) 

X4=S' sina sinO sincpl COSCP2, O~ CPl~ 71' 

X6=S' sina sinO sincpl sinCP2, O~ CP2~ 271'. 

In five dimensions one easily can show the following 
relations to be valid: 

ds= s'4ds' sin3ada sin20d8 sincp1dcp1dcpz (C6) 

ds= .14(~-T/2)[ (~-1) (1-112)]ldndT/dsl; (C7) 

s' sina=.1[(~-1)(1-T/2)Jl (C8) 

where 
r+r' 

s=--+s'. 
2 

(C9) 

(ClO) 

After some algebraic manipulation and the use of 
simple inequalities, one obtains 

IglAl~tfds(_l_+ 1 )Ir+r'_s\ 
Ir-sl2 Ir'-sI2 2 

Xsina 1 V'I;[V(S)- U(s)] I. (Cl1) 
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Likewise one sees that 

d 3 d 2(1-,f)2 
IglB/:Sfds-------

(/r-s//r'-sl)3Is'12 sin2a 

Xl V(s)- U(s) I. (C12) 

Note that in the neighborhood of a singularity of 
either the type 1/lr-sl or 1/lr'-sl, as S-H for 
example, from Eqs. (B12) and (C10) that 

d(1-7l):S4Ir'-sl (C13) 
and 

1 s'l '" d/2. (C14) 

Now applying conditions expressed in Eqs. (26)-(28) 
to Eqs. (Cll) and (C12), it is easy to see that 

1 gl(6)-Ol(6) 1 < E. 

Finally, let us very briefly outline the method for 

proving that 1 g2(6)-02(6) 1 < Elk. First we write 

g2(r,r')-02(r,r') 

M4 M f f f'" (l-,f)(~-l) 
=- dn d'TI di;----

7r 1-2iM 1 (~-'T/2) 

kd'4 kd' 
X [V - U]e2 ik.1(E-l) X----

7r 1-2iM' 

X [V' - U']e2 i k.1' (E'-l), (C16) 
where 

(C17) 

We now integrate by parts twice with respect to 1;' 
and once with respect to 1;. By using methods previously 
demonstrated, after much laborious calculation, one 
can indeed show that (Clb) is valid. 
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Rigorous Derivation of the Phase Shift Formula for the Hilbert Space 
Scattering Operator of a Single Particle 
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Wesleyan U ni'llersity, Middletown, Connecticut 
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For a single nonrela.tivistic particle moving in a spherically symmetric potential, the existence of the 
Hilbert space wave operators and S operator is proved and phase shift formulas for these operators are 
deduced. The probability, pen), for scattering into the solid angle n is obtained from the time dependent 
theory. The relation between pen) and the R matrix of the standard plane wave formulation of scattering 
theory is established. For collimated incoming packets, it is shown that pen) can be expressed as an energy 
average of the differential cross section. 

I. INTRODUCTION 

T HE importance of the asymptotic behavior of the 
field operators in quantum field theories has re

cently motivated mathematically rigorous studies of the 
asymptotic behavior of the solutions of the nonrela
tivistic Schroedinger equation.I - i In these studies the 
Hamiltonian operators of the free and interacting par
ticle are defined as Hilbert space operators following 
Von Neumann6 and Kato,1 so that the kind of con
vergence involved in the asymptotic limits can be pre
cisely specified. Suitable restrictions are placed on the 
scattering potential V(x); for example, that Vex) be 
square integrable over any finite region of three
dimensional space, and that as r -+ co V (x) be 0(,.-1-,), 
where r is the radial variable in spherical coordinates 
and e> O. It is then possible to prove that for every 
Hilbert space element u (i.e., for every normalizable 
wave function, u(x», there are elements u± belonging 
to the continuum subspace of the total Hamiltonian H 
such that as the time t approaches 1= co , 

exp( -iH ot)u -+ exp( -iHt)u± (1.1) 

in the sense of strong convergence in Hilbert Space. In 
Eq. (1.1) Ho is the kinetic energy operator and H=Ho 
+ Vex). Wave operators Q± are defined by the relations 
u±=Q±u, and it is shown that they and their adjoints 
Q± * obey the relations 

and 
(1.2a) 

(1.2b) 

where 1 is the unit operator and Pc is the projection 
operator onto the continuum subspace of H. The S 
operator is defined as the operator, which connects the 
incoming and outgoing states associated through Eq. 

1 J. M. Cook, J. Math. Phys. 36, 82 (1957). 
2 J. M. Jauch, Helv. Phys. Acta 31, 127 and 661 (1958). 
3 J. M. Jauch and I. I. Zinnes, Nuovo cimento 11, 553 (1959). 
4 M. N. Hack, Nuovo cimento 9, 731 (1958). 
6 S. T. Kuroda, Nuovo cimento 12, 431 (1959). 
6 J. Von Neumann, Mathematical Foundations of Quantum 

mechanics, translated by R. T. Beyer (Princeton University Press, 
Princeton, New Jersey, 1955). 

7 Tosio Kato, Trans. Am. Math. Soc. 70, 195 (1951). 

(1.1) with a given time-dependent continuum state. It 
follows that 

(1.3) 

and that S is unitary. Equations (1.1) to (1.3) thus 
provide a mathematically rigorous time-dependent 
basis for scattering theory. 

The present paper adds to the foregoing considera
tions in three respects. First, Eq. (1.1) is proved for 
potentials which are effectively 0(,.-2+,) rather than 
0(,.-1+,) as r -+ O. Second, explicit phase shift formulas 
for Q± and S are obtained. Third, the experimentally 
important formula for the scattering probability as an 
energy average over the usual differential cross section 
is deduced from the time-dependent Hilbert space 
formalism. 

The material is presented as follows. In Sec. II a 
well-known eigenfunction expansion for the Schroedinger 
equation is stated so that it can be used to define the 
Hamiltonian operators. In Sec. III, the Hamiltonians 
are defined. In Sec. IV, Eq. (1.1) is proved and the form
ulas for Q± and S are obtained. In Sec. V the formula for 
the scattering probability is derived. 

This section will be concluded with a statement of the 
precise conditions imposed on VCr). It is assumed that 
VCr) is Lebesgue integrable over any finite interval not 
including the origin, that for O<R< co 

and that either 

R f rV(r)dr< co, 
o 

f'" V(r)dr< 00, 

R 

f'" V(s)ds belongs to V(R,oo), 
r 

or as r -+ 00, 

V(r)=O(r- I-,). 

(1.4a) 

(l.4b) 

(1.Sa) 

(1.Sb) 

The notation V(a,b) designates the class of functions, 
which are Lebesgue measurable and square integrable 

139 
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on the interval (a,b). Equations (1.4) are used to estab
lish the eigenfunction expansion; one or the other of 
Eqs. (1.5) is joined to Eqs. (1.4) in the proof of Eq. (1.1). 

II. EIGENFUNCTION EXPANSION 

In this section, the bound state and continuum solu
tions, Y ml«(J,q,)'--~I(r), of the Schroedinger equation are 
used to generate a mean-square eigenfunction expansion 
of the Hilbert space elements, u, which is used in Sec. 
III for the definition of Hand H o. The expansion theo
rem could be obtained as a special case of a general 
theorem of Titchmarsh8 by adapting his proof to the 
conditions of Eq. (1.4). However, for the simple problem 
under discussion, the elementary approach used here 
serves its purpose in a direct way in terms of formulas 
which the physicist will find familiar. For ease in refer
ence in later sections, the angular and radial parts of 
the expansion theorem are treated separately. 

Let D designate the Hilbert space of complex
valued Lebesgue measurable functions, U(X1,X2,Xa), 
which are square integrable on - 00 <Xi< 00, i= 1,2,3. 
Let u(r,(J,q,) be an abbreviation for u(r sin8 cosq" 
r sin8 sinq" r cos8). Then r(sin8)*u(r,8,q,) is measurable 
and square integrable on (0::; r< 00,0::;8::; 11", 0::; q,< 211"). 
Let Y ml(8,q,) designate the normalized spherical har
monics. As is well known, it can be shown that9 

where 

Moreover, if 'Yml(r) is the function calculated for 
g(X1,X2,Xa) from Eq. (2.2), 'Yml(r) equals ,8ml(r) almost 
everywhere. Equations (2.1) and (2.2) thus establish a 
one to one correspondence between the elements of D 
and the sets, {aml(r)}, of functions for which the right
hand side of Eq. (2.3) is finite. 

Since each Clml(r) belongs to D(O, 00 ), it can itself be 
expanded in mean square on (0,00) according to 

N 

aml(r) = !.i.m. L amlnif;ln(r) 

+ !.i.m.f'" q,ml(k)if;l(r,k)dk, (2.4) 
w----+OO 0 

where 

(2.5a) 

and 

(2.5b) 

Furthermore, for each (ml), 

The tltln(r), n= 0, 1, ... , are the normalized eigensolu
tions of the radial equation 

-u"+ (l(l+ l)r-2+ 2JL V (r»u(r) = k2u(r), (2.7) 

Clml(r) = f Yml (8,c/»ru(r,8,q,)dO. 
4 .. 

(2.2) for k2::;0. The function if;1(r,k) is the solution for k>O, 
which is normalized so that 

In Eq. (2.1) the notation LL stands for 

L I 

L L . 
19l~1 

The notation l.i.m. means the limit in mean square on 
the interval (O::;r<oo, 0::;8::;11", 0::;c/><211-). In Eq. 
(2.2), dO stands for sin8d8dc/> and .It" indicates integra
tion over (0::;8::;71", 0::; c/> < 271"). The functions Clml(r) 
belong to D(O, 00) and have the property that 

JJUJJ2= J"'dX1f'" dX2 J'" dXaJ U(X1,X2,Xa) J2 
-00 -00 -00 

= La> f'" Jaml(r) J2dr. (2.3) 
o 

Conversely, given any set {,8ml(r)} of functions be
longing to D(O,oo) and such that the right-hand side 
of Eq. (2.3) is finite, the right-hand side of Eq. (2.1) 
exists and defines a function g(X1,X2,Xa) belonging to L2. 

8 E. C. Titchmarsh, EigenfuncUon Expansions, Part II (Oxford 
University Press, New York, 1958), Chaps. 12 and 15. 

9 A proof is given in O. E. Lanford III, Thesis, Wesleyan Uni
versity, 1959, Chap. II. This paper henceforth will be referred 
to as I. 

if;l(r,k) ~ (2/1I")(sin(kr-l7l"/2+o l(k» 

as r ~ 00 ; o/(k) is the phase shift. For all k the solutions 
are 0(r1+1) as r ~ O. The scattered particle's mass is JL; 
its total energy is k2/2JL. 

With each aml(r) belonging to D(O, 00 ), Eqs. (2.4) 
and (2.5) associate a function c/>ml(k) belonging to 
D(O,oo ) and a set of constants Clmln such that the right
hand side of Eq. (2.6) is finite. Conversely, given a 
function xml(k) and a set of constants ,8mln with the 
above properties, Eq. (2.4) defines a function (3ml(r) 
belonging to D(O, 00 ). If ~ml(k) and 'Ymln are calculated 
for (3ml(r) from Eqs. (2.5), (3mln='Ymln for all nand 
~ml(k)=Xml(k), almost everywhere. Thus Eqs. (2.4) and 
(2.5) establish a one to one correspondence between the 
Clml(r) belonging to D(O,oo) and the sets {cf>ml(k),amln} 
for which the right hand side of Eq. (2.6) is finite. 

A proof of the radial expansion theorem stated above 
has been given by Kodaira.1° In this proof it was as
sumed that VCr) is continuous on (0,00), that VCr) 
=O(r-2+,) as r ~ 0, and that V(r)=O(,--l-,) as r ~ 00. 
These conditions are equivalent to those of Eq. (1.4) 
for physical applications, except that Eq. (1.4) allows 
discontinuous potential wells of the kind which are 

10 K. Kodaira, Am. J. Math. 71, 921 (1949). 
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frequently convenient in practice. One of the authors 
(T.A.G.) has proved the expansion theorem using Eq. 
(1.4). The proof will be omitted. 

Equations (2.1)-(2.6) jointly establish a one to one 
correspondence between functions U(XI,X2,Xa) belonging 
to D and the sets of functions and constants 
{!/>ml(k),Umln} such that 

Moreover, by Eqs. (2.3) and (2.6) 

(2.9) 

The set {!/>ml(k),amln} will be referred to as the trans
form, Fu, of the Hilbert space element, u. This element 
is then the inverse transform, F-I{!/>ml(k),amln}, of 
{!/>ml(k),Umln}' It is easy to verify that the elements 
{!/>ml(k),amln} such that the right-hand side of Eq. (2.9) 
is finite constitute a Hilbert space with a norm given 
by the right-hand side of Eq. (2.9) and self-evident 
rules for addition, etc. The transform depends on the 
potential. It will be convenient to denote by F oU the 
transform calculated with V(r)=O. In this case, there 
are no bound states so no coefficients amln appear. 

III. OPERATORS HAND Ho 

The transforms introduced in Sec. II are defined in 
terms of the solutions of the Schroedinger equation. 
Hence, it is physically clear that H must be the operator 
multiplication by (k2/2J,L) in the space of the transforms 
{!/>ml(k),amln} and that Ho must be the corresponding 
operator for V(r)=O, provided that the operators thus 
defined are unique and self-adjoint. 

For a given VCr) and l=O, however, it is well known 
that Eq. (2.7) belongs to the limit circle case at r= O. 
This implies that if;o(r,k) (and, thus, the transform) is 
not unique; it also implies that if; 0 (r,k ) is not necessarily 
O(r) as r -+ O. Hence, a boundary condition must be 
imposed to fix if;o(r,k) uniquely. That the boundary 
condition if;o(r,k)=O(r) as r-+ 0 is the correct one is 
suggested by physical considerations. It is required by 
the physical interpretation of the quantum theory that 
the free particle Hamiltonian Ho be the self-adjoint 
operator multiplication by Ik1 2/2JL in the space of 
Fourier-Plancherel transforms 11(kl,k2,ka) of the func
tions U(XI,X2,Xa) belonging to D. This follows from the 
interpretation of 1 11(kl,k2,ka) 12 as the probability den
sity for momentum. It may be shownll that the operator 
multiplication by k2/2J,L in the space of transforms with 
V(r)=O is identical with Ho if and only if if;o(r,k)=O(r) 
as r-+ O. 

The boundary condition being thus determined, the 
operator H is defined as follows: The element, u, whose 

11 See Appendix A. 

transform is {!/>ml(k),amln} is in the domain D(H) of 
H if and only if 

(3.1) 

Then, by definition, 

Hu= P-I{ (k2/2J,L)!/>ml(k), (k I N2J,L)amln), (3.2) 

where k1n2 is the eigenvalue of the eigenfunction if;ln(r) 
of Eq. (2.7). Ho is defined analogously for V(r)=O. It 
is readily verified that Hand Hoare self-adjoint 
opera tors.12 

Having defined Hand H 0, it is a straightforward 
matter to define the unitary operators exp( -iHt) and 
exp(-iHot), which determine the time dependence of 
the scattered wave packet. This is done in Chap. III 
of I with the expected result that if Fu= {!/>ml(k),amln}, 

exp( -iHt)j=F-l{!/>ml(k) exp( -ik2t/2J,L), 
amln exp( -ik1n2t/2J,L)} (3.3) 

A corresponding formula is valid for Ho. Equation (3.3) 
is the starting point in the derivation of Eq. (1.1), 
which is carried out in the next section. 

This section will be concluded with a few remarks 
about the use of the eigenfunction transform as a means 
of defining H. The method just presented can be gen
eralized to non spherically symmetrical potentials and to 
an arbitrary number of particles. The essential steps in 
such a program have been carried out in Chapters XII 
and XIII of reference 8 where the existence of a uniquel3 

eigenfunction transform is established on the basis of 
physically reasonable assumptions. The transform es
tablished by Titchmarsh can be reduced in the problem 
under consideration to the one established directly in 
Sec. II. 

The eigenfunction transform method of defining H 
differs from that used by Kato7 although the two 
methods must of course lead to the same final result. 
In order to point up the difference, Kato's method will 
be briefly described. 

The kinetic energy operator is defined as the closure 
of the differential operator T 1, which is defined to be 
- 'iJ2/2J,L on a suitably chosen linear manifold D1• It 
is then proved that Ho is equal to the operator, multi
plication by 1 k 12/2J,L, in the space of Fourier-Plancherel 
transforms. With Ho thus defined, the potential 
V (Xl,X2,Xa) is restricted sufficiently that V u is defined 
everywhere on the domain of H o. The total Hamil
tonian, H, is defined as the closure of an operator HI, 
which itself is taken to be - 'iJ2/2JL+ V for elements of 
D1• It is proved that H = H 0+ V, the domain of H being 

12 See Chap. III of I. 
13 In footnote 8, the requirement that for V(r)=O the Green's 

function Go(x,y,E) be singular only at X= y accomplishes the
same result as regards uniqueness as the kinetic energy argument 
used above. 
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the same as that of H o. Kato's simple and elegant 
method, which he has formulated for the many particle 
problem, has the merit of guaranteeing a self-adjoint 
Hamiltonian without requiring the introduction of 
eigenfunction transforms. 

Because in the problem under consideration VCr) is 
more singular than the potentials envisaged in Kato's 
proof, and because for a partial wave analysis the exist
ence of the eigenfunction transform is essential to begin 
with, the authors found it simplest to employ the 
definition of H given in Eqs. (3.1) and (3.2). When 
Kato's conditions on VCr) are joined to those in Eq. 
(1.4), the two definitions of H yield the same operator. 

IV. ASYMPTOTIC LIMITS 

The purpose of this section is to prove Eq. (1.1). 

ing equation for face I Uml(r,t) 12dr, which follows from 
Eq. (2.6), it is seen that the convergence of the series 
on the right-hand side of Eq. (4.7) is uniform with 
respect to t for - 00 < t < 00. Therefore, if 

for all (l,m), Eq. (4.6) is valid. 
The rest of the discussion requires k>O. For this 

reason, functions UmlN(r,t) and UmlN(r,t) are defined by 
restricting the k integration in Eqs. (4.2) and (4.4) to 
the interval [N-1,NJ, (1 <N < 00). It is not hard to 
prove (see p. 55 of I) that 

Let U belong to L2 and be such that Fu= {q,mz(k),O} so 
that u is orthogonal to the subspace spanned by the if 
bound states.14 Let Ut= exp( -iHt)u. By the expansion 
theorems of Sec. II and Eq. (3.3), 

J:"'IUffll(r,t)-Uml(r,t)12dr---+O as Itl---+ 00 

lim ['" I UmlN(r,t)-UmlN(r,t)i2dr=O (4.9) 
I tl ..... '" 0 

where 

urn 1 (r,t) = !.i.m.f'" exp( -ik2t/2p.)cp.,.I(k)VtI(r,k)dk. (4.2) 
<0>-+00 0 

The asymptotic behavior of Vtl(r,k) [see below Eq. 
(2.7)J now motivates the consideration of the function 
ut(r,B,~) defined by 

r(sinB)lut(r,B,~) =l.i.m. LL(sinB)lV ml(B,~)UmI(r,t), (4.3) 
L->oo 

where 

urnl(r,t) = l.i.m.f'" exp( -ik2t/2p.)cp.,.z(k)xl(r,k)dk, (4.4) 
(0)-->00 0 

and in Eq. (4.4), xz(r,k) = (2/11")1 sin(kr-t1l"/2+51(k». 
It is easy to show using the theory of Fourier trans
forms in D( - 00,00) that Uml(r,t) belongs to D(O,oo) 
for all t and that 

(4.5) 

As the first main step in the derivation of Eq. (1.1), 
it will now be shown that 

lim Ilut-utll=O. (4.6) 
I t I ..... '" 

By Eq. (2.3) 

lIut- u tI12= f. t f'" I uml(r,t)- uml(r,t) 12dr. (4.7) 
1-0.....-1 0 

Minkowski's inequality applies to the integrals of Eq. 
(4.7). Therefore, by using Eq. (4.5) and the correspond-

for all N. Now 
N 

UmlN(r,t) - umlN(r,t) = f exp( -ik2t/2p.)cp.,.I(k) 
liN 

x [Vtz(r,k)-xl(r,k)Jdk. (4.10) 

Also, for all rand N, ~ml(k)(VtI(r,k)-xl(r,k» is sum
mabIe on [1jN,N]. Hence, the Riemann-Lebesgue 
lemma shows that 

lim [umlN(r,t)-UmlN(r,t)]=O ( 4.11) 
I tl-+OO 

for all O~r<oo. Consequently, if in Eq. (4.9) the 
limit can be carried under the integral sign, the proof 
that Ilut- utll ---+ 0 will be accomplished. Consider first 

R lui UmlN(r,t) - umlN(r,t) 12dr. 

For O~r~R and 1/N~k~N, Vtl(r,k)-xl(r,k) is 
bounded. Hence, by Eq. (4.10) I UmIN(r,t)-UmlN(r,tl 
~ K for all t and consequently, for alII <N < 00 and all 
O<R<oo 

R 

lim f I UmlN(r,t)-umIN(r,t) 12dr 
I tl-+'" 0 

R 

=f lim I UmlN(r,t)-umlN(r,t) 1
2dr=0. (4.12) 

o I tl ..... '" 

It is therefore sufficient to show that 

limf'" IUmIN(r,t)-umlN(r,t) 1
2dr=0, (4.13) 

R-+oo R 

14 The elements, u, constitute what has been referred to as the 
continuum subspace of H in earlier sections. uniformly with respect to t for - 00 <t< 00. 
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One sufficient condition is readily obtained from the 
asymptotic formula 

~'(r,k)-XI(r,k)=o[f'" V (y)dy ]+0(1/r), (4.14) 

for k>O and r-'> 00. [Equation (4.14) is readily de
duced from Eq. (4.16).J Suppose fr'" I V(y) I dy belongs 
to V(R, 00 ) for sufficiently large R. Then the Schwarz 
inequality applied to Eq. (4.10) shows that for all t 
and sufficiently large r, 

I u",!N(r,t)- Um!N(r,t) 12~ g(r), (4.15) 

where g(r) belongs to L(R,oo). Thus the condition ex
pressed by Eq. (4.13) is satisfied. Consequently, Eq. 
(4.6) is valid. 

The above condition on V (r) can be replaced by the 
condition, V (r) = 0 (rl-<) as r -'> 00, for some E> O. This 
proved as follows. For k>N-l and r>R(N,E), ~,(r,k) 
satisfies the integral equation, 

~1(r,k)=x,(r,k)-1/k f'" sink(r-s) 

T Xq(s)~I(s,k)ds, (4.16) 

where q(s)= l(l+ 1)/s2+ 2}LV (s). It follows from the 
iteration of Eq. (4.16) that as r -'> 00, 

~I(r,k) =x",(r,k)+O(r-(n+l)e), (4.17) 

where x",(r,k) is the function obtained by iterating Eq. 
(4.16) n times. Given E, n can be chosen so that m> 1. 
This suffices to make ~l(r,k)-Xnl(r,k) belong to 
VCR, 00) so that the argument below Eq. (4.13) can be 
applied to ~l(r,k)-Xnl(r,k). Furthermore, 

x"l(r,k) -xl(r,k) = j"'dr1Gk(r,rl)Xl(r1)+'" 
r 

XGk(r"_l,r,,)xl(r,,), (4.18) 

where Gk(x,y) = -k-1q(y) sink(x-y). 
With reference to Eq. (4.10), now consider 

~(r,t)= fN exp( -iPt/2}L)¢m,(k) 
liN 

X [x",(r,k)-x,(r,k)Jdk. (4.19) 

For all rand t, Eq. (4.18) can be substituted into Eq. 
(4.19) and the k integral carried out first in each of the 
terms of the resulting sum. Moreover, the products 

k-p sink(r-rl)'" sink(rp-l-rp) sin(krp-17r/2+«'h(k» 

can be decomposed into a sum of 2p terms of the form 
sin(kZ-l'll"/2+o,(k», or cos(kZ-I'll"/2+OzCk» where Z 

is of the form 2r i - 2r j+ - + ... ± r.16 In the definition 
of Z, ri, rj, etc., are selected from rl, r2, r3, "', r p, and 
each distinct combination of 0, 1, 2, "', P of them ap
pears exactly once. Let 

gp(Z,t) = f N exp( - ik2t/2}L)¢ml(k)k-p 

lIN 
X sin[kZ-l'll"/2+o1(k)Jdk. (4.20) 

By the theory of Fourier transforms 

If hp(Z,t) is defined by Eq. (4.20) with cos(kZ-l'll"/2 
+ol(k» in place of sin(kZ-l'll"/2+Oz(k», Eq. (4.21) 
applies with hp(Z,t) in place of gp(Z,t). With the k 
integrations done, Hr,t) is given in part by a sum of 
terms of the form 

f'" drlq(rl) il"'dr2q(r2)' .. ii~ldriq(ri)gp(Z,t) 

X i"'dri+1q(ri+1)" .j'" drpq(rp), (4.22) 
ri Tp-l 

where Z contains ri but none of the rl for l>i. In addi
tion, there are analogous terms with hp(Z,t) in place of 
gp(Z,t). Finally, there are terms with gp(r,t) and hp(r,t) 
which factor out of the integrals over the rio By applying 
the Schwarz inequality and Eq. (4.21) to the integrals 
containing gp(Z,t) and hp(Z,t), and by noting that as 
r-'> ooq(r)=0(r1-<), it is readily verified that for all t 
as r-'> 00, 

Hr,t) = gp(r,t)O(r<)+hp(r,t)O(r<)+O(ri(l+<), (4.23) 

for all fixed t, m, and N. In Eq. (4.10), (~I(r,k)-x,(r,k» 
is now written as (~I(r,k)-Xnl(r,k»+ (x"l(r,k)-xl(r,k». 
It then follows from Eq. (4.17) (with nE> 1) and Eq. 
(4.19) that as r-'> 00, 

u",!N(r,t)- UmIN(r,t) = Hr,t)+O(r-l-<) (4.24) 

Finally, Eqs. (4.24), (4.23), and (4.21) show that as 
R --'i 00, 

L"'! u",!N(r,t)- um!N(r,t) !2=0(R-<) (4.25) 

for all E, t, m, N, and t. Therefore, Eq. (4.13) is satisfied 
and the validity of Eq. (4.6) is established. 

The last step in the discussion is the proof that as 
t -'> ± 00, u(r,t) approaches its outgoing and incoming 
parts, respectively. Let ¢m,(k) be the function in Eq. 

15 If P is even, sine functions are obtained j if P is odd, cosine 
functions occur. If the number of factors ri, rj is even, renters 
with a plus sign. 
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(4.2) and by definition let 

r (sinO) iUt± (r,O,cp ) 

=l.i.m. LL (sin8)iY mz(8,cp)umz±(r,t), (4.26) 

where 

Uml±(r,t) =l.i.m. r exp( -ik2t/2p.)CPml(k) 
w-+OO Jo 

X (27r)-! exp[±i(kr- (l+1)7r/2+Mk»]dk. (4.27) 

The umz±(r,t) belong to V(O,oo) for all t and their 
norms satisfy Eg. (4.5) without the factor of two. 
Moreover, by comparing Egs. (4.3) and (4.4) with 
Eqs. (4.26) and (4.27) it is seen that 

(4.28) 

It will be shown at the end of this section that 

lim [[Ut±[[ =0 (4.29) 
t---+';foo 

Therefore, by Egs. (4.28), (4.6), and the definition of 
Ut above Eq. (4.1), if Fu= {CPml(k),O}, 

lim [[[exp( -iHt)]u-ut±[[ =0, (4.30) 
t---+±oo 

where Ut± are defined by Eqs. (4.26) and (4.27). 
The desired asymptotic limits follow directly from 

Eq. (4.30). Let g belong to V and let Fog= {xmz(k)}. 
Equation (4.30) applies to g in the form in which H is 
replaced by H 0 and the u± t are replaced by functions g t±, 
which are defined by replacing CPml(k) by Xmz(k) and 
setting ol(k) equal to zero in Eqs. (4.26) and (4.27). 
Now let g±=F-l{Xmz(k) exp(±iol(k»,O}. The applica
tion of Eqs. (4.30), (4.26), and (4.27) to each of these 
functions shows that 

lim [[e-iHtg±_e-iHotg[[ =0. (4.31) 
t--+=t=oo 

Thus Eq. (Ll) is established. 
The phase shift formulas for the wave operators can 

be given concisely in terms of F and F o. In order to do 
this, the element {8mz(k)}=Fou is identified with the 
element {8ml(k),0} of the Hilbert space r consisting of 
all {CPmZ(k),llmln} such that the right-hand side of Eq. 
(2.9) is finite. With this convention, F and F-l establish 

:a one to one correspondence between V, and r while 
Fo and FO-l establish a one to one correspondence be
tween V and the continuum subspace of r. The for
mulas for Q± are now very simple. By the definition of 
Q± below Eq. (Ll) and the definition of g± below 
Eg. (4.30), 

Q±=F-l exp(±iol(k»Fo. (4.32) 

By using (4.32) and the norm-preserving properties of 
.F and F 0, it is easy to show that 

Q± *=Fo-l[exp(=Fio z)].PcF, (4.33) 

where .Pc is the projection operator for the continuum 
subspace of r, (.P c{CPml(k),O!mln} = {CPmz(k),O}). Equa
tions (1.2) follow directly from Eqs. (4.32) and (4.33). 
Finally, from Egs. (1.3), (4.32) and (4.33) it is seen that 

S=Fo-l[exp(2iol(k»]Fo. (4.34) 

The relation of the Hilbert space operator, S, to the 
R matrix of the plane wave formulation of scattering 
theory will be taken up in the next section. This section 
will be concluded with an outline of the proof of Eg. 
(4.29), the complete details of which are given in 
Chapter IV of I. 

By Eqs. (4.26) and (2.3), Eq. (4.29) will hold as 
t ~ 00 if 

(4.35) 

The series in Eq. (4.35) converges uniformly with re
spect to t, so it remains to be shown that the integrals 
tend toward zero. This is done by approximating 
CPmz(k) exp( -ioz(k» (Eg. (4.27» in mean square by a 
step function zero near the origin and zero for large k. 
This reduces the problem to the consideration of 
integrals of the type 

where O<a<b< 00. For sufficiently large t, and all r, 
it can be shown that 

where A and B are positive constants, Moreover, the 
integral over k tends toward zero by the Riemann
Lebesgue lemma. Thus the lim(t ~ 00) can be taken 
inside the integrals over r in Eq. (4.36) and the limit 
is zero. Therefore Eq. (4.29) is valid insofar as Ut- is 
concerned. The proof for t ~ - 00 is obtained by an 
identical argument. 

v. RELATION OF S TO THE R MATRIX OF THE 
PLANE WAVE THEORY AND TO THE 

SCATTERING CROSS SECTION 

In this section, the probability P(Q) for scattering 
into a given solid angle, Q, is computed from the time 
dependent formalism. The conditions under which 
P(Q) can be described in terms of the R matrix are then 
discussed. Finally, a mathematically nonrigorous, but 
physically convincing argument is given, which shows 
that for wave packets of the type used in conventional 
scattering experiments, 

P(Q) = u(Q)P(a), (5.1) 

where u(Q) is the usual scattering cross section averaged 
over energy, and Pea) is the two dimensional proba-
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bility density for the incident particle to strike the 
point, a, where the scatterer is located in a plane per
pendicular to the motion of the incident particle. This 
is the result which one would desire for it guarantees 
that when multiple scattering and interference effects 
can be neglected the average number of particles scat
tered into Q for N incident particles is equal to NtpIY(Q), 
where t is the target thickness and p the number of 
scatterers per unit volume. 

The formula for P(Q) is obtained as follows. 
Let V(Q; a,b) designate the region (O:::;a:::;r:::;b:::; 00, 

8o:::;8:::;(h, CPO:::;CP:::;CP1). Let ut=exp(-iHt)u, where Fu 
= {CPml(k),O} as in Sec. IV and consider the probability 

(5.2) 

that the scattered particle be in V (Q; a,b) at time t. 
From Egs. (4.26), (4.27) and (4.30) it is easy to see that 

lim (pt(Q;a,b)-! \ut±(r,8,cp) \2dX) =0, (5.3) 
t->±oo V (Il; a,b) 

and that for all t 

(r,t)um.z.±(r,t)dr, (5.4) 

the convergence of the series being uniform with re
spect to t. From Eq. (4.27) and the theory of Fourier 
transforms 

fOO Uml± (r ,t)Um'I'± (r,t)dr 
-00 

= foo exp[±i(oz(k)-oz.(k)-(l-l'}1I/2)] 
o _ 

XCPmZ(k)CPm'I.(k)dk. (5.5) 

Furthermore, for any finite c 

Je uml+(r,t)um.z.+(r,t)dr 
-00 

= iooumz+(C-S, t)Um'I'+(C-S, t)ds, (5.6) 

where, by Eq. (4.27), 

umz+(c-s, t) 

= l.i.m.i'" exp( -ik2t/2}J.)CPml(k) (2'l1-)-! exp(ikc) 
.,-.00 0 

Xexp[i( -ks- (l+1}n"/2+o z(k»]dk. (5.7) 

Now, to within a factor exp[i(kc- (1+ 1)'lI+2oz(k»], 
umz+(c-s, t) has the same form as umz-(s,t). Hence, 
it is easily seen from the arguments below Eq. (4.35) 
and the Schwarz inequality that, for all finite c, 

limf" umz+(r,t)um·z·+(r,t)dr= O. (5.8) 
t-->oo 

-00 

The same kind of argument applies to Umz-(r,t) for 
t -+ ~ 00. Therefore, by Eqs. (5.2), (5.3), (5.4), and 
(5.8), for all 0:::; a< 00, 

lim Pt(Q; a,oo) 
t-+±oo 

L Z L z· i 
= lim L L L L Ym1 (8,CP)Ym•z·(8,cp)dQ 

L-+oo l=O m.=-l If=O m'=-l' n 

For finite a and b the limit is zero. Thus, the scattered 
particle is asymptotically outside of any sphere of 
finite radius a. 

The probability, P(Q), for scattering into the solid 
angle Q should clearly be defined by the relation 

P(Q)=limPt(Q,a,oo ). (5.10) 

Equation (5.9) then provides a formula for P(Q) in 
terms of the phase shifts and the properties of the in
cident wave packet. The formula can be rendered more 
concise in terms of the Fourier transforms of the incom
ing and outgoing wave packets. As was shown in 
Sec. IV, as t-+ 00, Ut-+exp(-iHot)u±, where Fou± 
= {CPmz(k) exp(±ioz(k»}. Furthermore, as is proved in 
Appendix A, the F ourier-Plancherel transforms a±( k,8,cp) 
of u± satisfy the relation 

L I 

k(sin8)lu±(k,8,cp) = lim L L (sin8)!Y mz(8,cp) 
£->00 z~ m=-Z 

x (-i)lcpml(k) exp(±io1(k». (5.11) 

Consequently, by Egs. (5.10), (5.9), and (5.11) 

P(Q) = i OO i \ u+(k,8,cp) \2k2dkdQ. (5.12) 

The physical interpretation of Eg. (5.12) is straight
forward. The probability that the particle be scattered 
into Q is equal to the probability that the momentum 
vector of the outgoing packet lie in Q. This well-known 
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result, which has just been shown to be a rigorous con
sequence of the time-dependent formalism, is the basis 
for the physical interpretation of calculations in 
which a+(k,O,q,) is obtained from a time-independent 
formalism. 

The connection of the Hilbert space formulas with 
the R matrix can now be readily deduced. Let P _en) 
designate the probability that the incident particle be 
scattered into n in the absence of the scatterer. [Use 
a-(k,O,q,) in place of a+(k,O,q,) in Eq. (5.12).J Let 

P'(f!.) = fooL I a+(k,O,q,)-a-(k,O,q,) 1
2k2dkdn. (5.13) 

o \I 

It is easy to prove that 

Therefore, if the incident beam is appropriately colli
mated, the scattering probability can be calculated 
accurately from P' (Q) except near the forward direction. 
Now, by Eq. (5.11), 

k (sinO)! ( u+(k,O,q,) - a-(k,O,q,» 

L I 

=l.i.m. L L (sinO)!Ym/(O,q,) 
L-oo l-O",.,....I 

X [exp(2iOz(k»-IJ( -i)If/Jrn/(k) exp( -iOz(k» 

= l.i.m.i k(sinO)!RL(O,q,; O',q,'; k) 
L-oo . 

4r 
Xa-(k,O',q,')dn', (5.15) 

where 

L I 

=L L Yml(O,q,)Ymz(O',q,')[exp(2iOz(k»-1], 
l-Om-I 

L 

= L (47r)-1(21+ 1)PI(cos0) 
1=0 

X[exp(2iilz(k»-1]. (5.16) 

In obtaining Eq. (5.16), the addition theorem for 
spherical harmonics was used. The angle 0 is the angle 
between the vectors k'(k,O',q,') and k(k,O,q,). Aside from 
a multiplicative factor, RL(O,q,; O',q,'; k) is just the sum 
of the first L terms of the series for the scattering 
amplitude which appears in the stationary-state formu
lation of scattering theory for monochromatic incident 
plane waves. Suppose that the series (5.16) converges 
to a function R(O,q,; O',q,'; k) in such a way that 

~ 1. k(sinO)!RL(O,q,; O',q,'; k)a-(k,O',q,')dQ' 
4r 

= f k(sinO)tR(O,q,; O',q,'; k)a-(k,O'q,')dn' (5.17) 
4". 

for almost all (k,O,q,). Then, the limit functions in Eqs. 
(5.15) and (5.17) are equal almost everywhere, and 

a+(k,o,q,)- a-(k,O,q,) 

= f R(O,q,; O',q,'; k)u-(k,8',q,')dn'. (5.18) 
4r 

In this case, the scattering probability can be calcu
lated from the incoming wave packet through Eqs. 
(5.18) and (5.13). The relation of R(O,q,; O',q,'; k) to 
the R matrix is the following. The R matrix, R(k,k'), is 
defined by the formal relation16 

a+(k,o,q,) - a-(k,O,q,) 

= f f f(-21ri)R(k,k')O(E-E')u-(k')dk', (5.19) 

where E= k2/2JJ. and o(E-E') is the Dirac delta func
tion. Equation (5.19) means 

a+(k,o,q,) - u-(l~,O,q,) 

= - 21rikJJ.1. R(k,k')u-(k')dQ', (5.20) 
4r 

where I kl = I k'i. By comparing Eqs. (5.20) and (5.18), 
it is seen that the R matrix is defined on the energy shell 
whenever the limit R(O,q,; O',q,'; k) of RL(8,q,; O',q,'; k) 
exists and Eq. (5.17) is valid. 

From the physical point of view, there is no point in 
discussing potentials for which Eq. (5.18) does not hold, 
because if the series in Eq. (5.16) does not converge 
fairly rapidly, the phase shift approach will be useless 
for computation anyway. It is possible, of course, to 
contemplate potentials for which the series (5.16) 
diverges for 0=0 since in practice the calculation of 
nonforward scattering using Eqs. (5.13) and (5.18) 
need not require integration over 0=0. The con
vergence of the series (5.16) and the validity of Eq. 
(5.17) can be tested by using the Born approximation 
for the phase shiftsP As is well known, it is sufficient 
for convergence for 0~0 that as r~ 00 VCr) =0(,.-2-,), 
E>0.I8 The stronger condition V(r)=O(r-3-,) is suffi
cient to guarantee absolute and uniform convergence 
for O~O~1r. 

The usual formula for p'(n) in terms of the dif
ferential scattering cross section is obtained by special
izing a-(k,O,q,) so that it conforms to experimental 
conditions. This has been done by Ekstein,16 Eisenbud,19 

16 See, for example, H. Eckstein, Phys. Rev. 101, 880 (1956). 
17 D. S. Carter, Thesis, Princeton University, 1952 (un

published). 
18 L. I. Schiff, Quantum Mechanics (McGraw-Hili Book Com

pany, Inc., New York, 1949), 1st ed., p. 187, problem 5. 
19 L. Eisenbud, Thesis, Princeton University, 1948 (un

published). 
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and Jauch.20 An alternative formulation, based on the 
same physical arguments, is presented below. 

Suppose that the scatterer is located at the point 
whose cartesian coordinates are (al,a2,0) in the reference 
frame in which the scattered beam is directed along the 
positive Xa axis. If the change of location of the scatterer 
from the origin to (al,a2,0) is taken into account in the 
usual way, it follows from Eqs. (5.13) and (5.18) that 

P'(Q)= j'dQi""dk\ f R«(),q,; ()',q/; k) 
n 0 4r 

Xexp(ik'· a)U-(k,()',q,')dQf (5.21) 

Now, with a typical beam (beam diam "'1 cm, mo
mentum'" 108 em-I), u-(k,()',q,') goes to zero strongly 
outside a forward cone of apex angle '" 10-8 rad cen
tered on the Xa axis. Thus, in cases of physical interest 
R«(),q, ; ()',q,' ; k) can certainly be replaced by R(8,q, ;0,0; k). 
This leads to 

P'(Q)~ '£dQ i""dkO'k«()'q,) 

X \ (27r)-li
r 

i
h 

exp(ik'· a)a-(k,()',q,') 

Xk2 Sin8'd()'dq,'1
2

, (5.22) 

where 

"" 11k «(),q,) = \ k-1 L: (21+ l)PI(cos() exp(i61(k)) sin61(k) \2. 
l~ (5.23) 

It will be recognized that 11k «(),q,) is the differential cross 
section as usually defined. Equation (5.22) can be fur
ther transformed by noting that with k'" 108 and 
()'",1O-8, it will be a very good approximation to write21 

~ (27r)-lf"" f"" exp(ik'· a)a-(k 1,k2,k)dk1dk2 
-00 -00 

~ (27r)-lf"" exp( -ikxa)u-(al,a2,Xa)dxa. (5.24) 

-"" 

Finally, with conventional collimation, it should be 
possible to describe the beam in terms of packets of the 
form 

(5.25) 

00 See the first article of footnote 2. In this discussion the energy 
spread of the incoming packet is not considered. 

21 The final result in Eq. (5.24) is obtained from the theory of 
Fourier transforms and implies physically harmless mathematical 
restrictions on u- (XI ,X2.X3). 

In this event, Eq. (5.22) becomes 

P'(Q) ~P(a) .£ dQ i"" dkO'k«(),q,) \ e(k) \2, (5.26) 

where e(k) is the Fourier transform of e(xa)[il(k)=O 
for k<O] and P(a)= Ig(al,a2) 12. Since U-(XI,X2,Xa) is 
normalized, f-"" "" f-oo""P(a)da1da2= 1 and.to"" lil(k) 1

2= 1. 
Equation (5.26), which because of Eq. (5.14) is prac
tically equivalent to Eq. (5.1), is the final result. It 
shows how the cross section is to be averaged over the 
energy spectrum of the incoming beam, and shows ex
plicity through pea) how the scattering decreases when 
the target is not in the center of the beam. 
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APPENDIX A 

In this appendix, the relation between the Fourier
Plancherel transform, 11(kl,k2,ka), of U(Xl,X2,Xa) and the 
transform, (tf>ml(k)} , for V=O is established. Let 
un(r,(),q,) be equal to u(r,(),q,) for O~ r~ n and zero 
otherwise. Because of the norm-preserving properties 
of both transforms and because u .. - u in mean square, 
11 .. -11, and tf>mzn(k)-tf>mz(k) in mean square. ({tf>ml .. (k)} 
=Fou ... ) Since 11" and 11 belong to L2, they possess ex
pansions of the form given in Eqs. (2.1)-(2.3). Let 
'Yml .. (k) and 'Yml(k) correspond, respectively, to the 
quantity called amz(r) . in these equations. Clearly, 
'Ymln(k) - 'Yml(k) in mean square. Furthermore, 

n 'Jr' 211" 

xi r'2dr'i i exp(-ik·r')u(r',()',q,')dQ', (Al) 

where k is the radius vector to the point (k,()jq,). In 
Eq. (A1), the order of integration can be reversed and 
the exponential can be expanded in terms of spherical 
harmonics and Bessel functions. In this way, there 
results 

'Yml .. (k) = (-i)Zi" i r i h 

(kr)IJI+I(kr) 

X r mZ «(),q,)ru (r,(),q,)drdQ 

(A2) 

The last equality in Eq. (A2) follows from Eqs. (2.2) 
and (2.5) and the fact that for V=O~I(r,k) is equal to 
(kr)IJzH(kr). It follows from Eq. (A2) and the con-
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vergence of "imln(k) and ¢mln(k) that 

"iml(k) = (-i)l¢ml(k) (A3) 

almost everywhere. Furthermore, from the definition 
of "iml(k) it is easy to see that for any finite K and p>o 

(A4) 

By taking p=4, it follows that IIk2ali < 00 if and only if 
Eq. (3.1) is satisfied. (Note that V(r)=O.) Further
more, from Eq. (A3) and the bi-uniqueness of the trans
forms in question, it follows that when IIk2ali < 00, the 
function whose Fourier-Plancherel transform is (k2/2p,)a 
is identical with FO-I{ (k2/2P.)¢ml(k)). Hence, Ho, as de
fined by Eqs. (3.1) and (3.2), is equal to the operator 
multiplication by k2/2p. in the space of Fourier
Plancherel transforms. 

To see that the foregoing is true only with the bound
ary condition if;o(x,k)=O(x) for x~ 0, consider the' 
radial part of the transform for 1=0 without this con
dition.22 For any function u(r) belonging to D(O, 00) 

u(r)= ~~~iwif;a(r,k)¢a(k)dk, (AS) 

where 

¢CX(k) = ~~~iwif;CX(X,k)U(X)dX. (A6) 

22 E. C. Titchmarsh, Eigenfunction Expansions Associated with 
Second Order Differential Equations (Oxford University Press, 
London, England, 1946), p. 59. 

The function if;a(r,k) is given by 

For a=O, if;"-(x,k) reduces to the function if;o(x,k) which 
figures in Eqs. (2.4)-(2.6). Now consider the function 
g(XI,X2,Xa) = exp( - pr). It belongs to D and it is readily 
verified that f f f I k2g(k l ,k2,ka) 1 2dk< 00. Therefore, 
g belongs to the domain of the operator, multiplication 
by k2/2p, in the space of Fourier-Plancherel transforms. 

Let xcx(k) be the transform of g defined by Eqs. 
(2.1)-(2.6) for V =0 using the if;a(x,k). (Only the term 
with 1=0 contributes.) In this case the function u(r) 
in Eqs. (AS) and (A6) is 27r!r exp( - pr). Direct calcula
tion now shows that as k ~ 00, 

xa(k)= (2v2/k2)(1+0(k-2»; sina;;eO, 

= ° (k-a), sina=O. 
(AS) 

From Eq. (AS) it is clear that k2xcx (k) belongs to 
D(O,oo) if and only if sina=O. Therefore, g(XI,X2,Xa) is 
in the domain of the operator, multiplication by k2/2p. 
in the space of the transform defined by Eqs. (2.1)
(2.6) if and only if sina=O. Thus, the domains of the 
operators, multiplication by k2/2p, in the space of 
Fourier-Plancherel transforms, a, and multiplication by 
k2/2p, in the space of the transforms Fou are identical 
if and only if sina=O. 
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Analyticity of the Fourth Order Scattering Amplitude with Two Comp]ex Invariants* 
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The partial Feynman amplitude corresponding to a particular fourth order diagram is examined as a 
function of energy and momentum transfer with both of these variables complex. The region of regularity 
of this function is found, and the types of singularities at the remaining points are determined. An approach 
which requires only elementary calculations is indicated. The condition for the validity of Mandelstam's 
representation in the fourth order is obtained. Spectral representations for exchange scattering processes at 
fixed momentum transfer are discussed as another application of the principal results. 

1. INTRODUCTION 

I T is the purpose of this paper to give a systematic 
discussion of the analytic properties of the partial 

scattering amplitude associated with a particular 
fourth order Feynman diagram. We allow two in
variants, the total four-momentum squared and the 
square of the four-momentum transfer, to be complex. 
We also show how the analytic properties of an integral 
as a function of several complex variables can be 
studied. 

Perturbation-theoretic problems involving one com
plex variable have been studied by a number of authors. 
Karplus, Sommerfield, and Wichmannl made a syste
matic study of the third- and of the fourth-order ampli
tudes. The two papers of reference 1 are referred to in 
the sequel as I and II. Our results constitute an exten
sion of the results of II. 

Perturbation-theoretic problems involving more than 
one complex variable have been studied by Kallen and 
Wightman,2 by Mandelstam,3-6 by Oehme,6.7 and by 
Taylor. 8 In each of these works an essential part of the 
argument involves an explicit evaluation of certain 
functions. Our analysis, on the other hand, is based on 
Feynman's integral representation9 of perturbation 
theory amplitudes, and we relate the singularities of an 
amplitude to the singularities of the integrand without 
carrying out the integration explicitly.lO 

* This work was supported in part by a U. S. Air Force contract, 
monitored by the Air Force Office of Scientific Research of the Air 
Research and Development Command. 

1 R. Karplus, C. M. Sommerfield, and E. H. Wichmann, I, 
Phys. Rev. 111, 1187 (1958); II, Phys. Rev. 114, 376 (1959). 
Further references are given in paper I. 

2 G. Kallen and A. S. Wightman, Mat. Fys. Skr. Dan. Vid. 
Selsk. 1, No.6 (1958). The vertex function in perturbation theory 
is discussed in Appendix III. 

3 S. Mandelstam, Phys: Rev. 112, 1344 (1958). 
4 S. Mandelstam, Phys. Rev. 115, 1741 (1959). 
6 S. Mandelstam, Phys. Rev. 115, 1752 (1959). 
6 R. Oehme, Phys. Rev. 111, 1430 (1958). 
7 R. Oehme, Nuovo cimento 13, 778 (1959). 
8 J. G. Taylor (preprint). 
9 Perturbation methods and Feynman integral representations 

are described in M. J. Jauch and F. Rohrlich, The Theory of 
Photons and Electrons (Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1955), Chap. 8 and Appendix V. 

10 Our method is an extension of the discussion by R. J. Eden, 
Proc. Roy. Soc. (London) A210, 388 (1952); d. also M. Grisaru, 
Phys. Rev. 111, 1719 (1958), footnote 8. 

We obtain a new derivation of the condition for the 
validity of Mandelstam's double integral representation 
in the fourth order. Our derivation, however, avoids 
the intricate calculations by which Mandelstam4 

originally obtained the same condition. Another 
application of our analysis of singularities deals with 
spectral representations for exchange scattering pro
cesses at fixed momentum transfer. Our method can be 
applied directly to the study of analyticity of certain 
higher order amplitudes (i.e., those amplitudes con
sidered in Appendix B and corresponding to diagrams 
illustrated in Fig. 10) for which direct calculations 
would not be feasible. 

As in II, we restrict our discussion to the partial 
amplitude associated with the diagram of Fig. 1. The 
other diagrams of the fourth order either are topo
logically equivalent to that of Fig. 1, or else are 
reducible, in which case the analytic properties of the 
corresponding partial amplitudes can be studied 
without difficulty see also footnote 4). The partial 
amplitude associated with the diagram of Fig. 1 will 
be called the four-point function. 

In Sec. 2 we determine the geometric configuration 
of the surfaces to which the singularities of the four
point function are restricted. In Sec. 3 we determine 
which points of these surfaces are regular and which are 
singular for the four-point function. In Sec. 4 we 
consider the applications to Mandelstam's represen
tation and to exchange scattering. In Appendix A we 
describe the method used for the determination of singu
larities. In Appendix B we prove two theorems regard
ing the singularities of Feynman amplitudes correspond
ing to a certain class of diagrams to which the diagram 
of Fig. 1 belongs. In Appendix C we discuss briefly the 
.dependence of the four-point function on the external 
masses. In Appendix D we determine the types of 

FIG. 1. Fourth-order Feynman dia
gram for a scattering process. 
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singularities of the four-point function at its singular 
points, and prove in this way the existence of singu
larities of the function at the points in question. 

We now review certain definitions and facts from 
footnote 2. We consider the four-point function F 
corresponding to the diagram of Fig. 1, and we consider 
the masses and the momenta there indicated,u We 
define 

P13= PI2+P23, P24= P23+P34, (1.1) 
and 

YkZ= - (pkz2-mk2-mz2)/2mkmZ. (1.2) 

We ignore a constant factor, and we have 

F= ildXlildX2ildX3ildX4 

8(1- Xl- X2- Xs- X4) 
X (1.3) 

mlm2m3m4[)2 
with 

4 

D= L Xk2+2 L XkXZYkZ. (1.4) 
k~l k<! 

We impose stability conditions on the external masses 

Y12> -1, Y23> -1, Y34> -1, Y14>-1. (1.5) 

For convenience we also impose stability conditions on 
the internal masses 

Y12< 1, Y23 < 1, Y34 < 1, Y14 < 1. (1.6) 

The restrictions (1.6) will be removed in Appendix C. 
If -1~Ykl~1, we define 8kl as in II by 

(1.7) 

Our primary interest will be with F=F(Y13,Y24) on 
its physical sheet, which we define by 

-1I'<arg(Yls-1),arg(Y24-1) <11', (1.8) 

with the condition that F be real and positive for 
Y13, Y24 real and greater than one. We shall, however, 
consider also the analytic continuation of F to the 
boundary of the physical sheet, i.e., to the two 
hyperplanes 

-00 <Y13<1 and -00<Y24<1. (1.9) 

2. SURFACES OF SINGULAlUTIES 

According to Appendices A and B, we may have 3: 
singularity of F if the determinant of some principal 
minor of the matrix 

[Y~2 Yi2 ;:: ;::] 
Y13 Y23 1 Y34 
Y14 Y24 Y34 1 

(2.1) 

11 In order to avoid complications with infrared divergences 
we assume that all of the internal masses m; are nonzero. We al~ 
.assume that all particles have spin zero; it is pointed out in I 
that there is no loss of generality in such an assumption. 

FIG. 2. The possible arrangements of the lines 
YI3=L 13 (i) and Y2.=L2.(k). 

vanishes. The two 2X2 minors which are relevant for 
us give the values 

Yls=±1, 

Y24=±1. 

(2.2a) 

(2.2b) 

The 3X3 minor defined by indices 1, 2, 3 has the 
determinant 

K4= 1-Y122_Y132-Y232+2Y12Y13Y23 (2.3) 

[d. Eq. (II, B2)]. The solutions of the equation K 4=0 
may be written 

Y13=cos(812±823) ==L4±. (2.4a) 

The remaining 3X3 minors give analogous equations 
K2=0, K1=0, K 3=0, which yield 

Y13= cos (834±814) ==L2±, 

Y24= cos (82S±834) == L1±, 

(2.4b) 

(2.4c) 

Y24= cos (814±812) ==L3±, (2.4d) 

respectively. Note that each of the Eqs. (2.2a,b) and 
(2.4a-d) places a restriction on only one of the variables 
Y13, Y24, while the other remains arbitrary. Of the 
quantities L;± only the L;+ were used in II. 

Let us assume that the six quantities ±1, L2±, L4± 
are all distinct, and that ±1, L 1±, L3± are likewise all 
distinct. (Degenerate cases in which some of these 
quantities coincide are discussed in Appendix C.) From 
Eqs. (2.4a-d) it follows that -1 <L;±< 1. Let us label 
the quantities L2±, L,± as L l3 (!), "', L 13 (4J, where 
L 13(i)<L 13(Hl), and let us label L 1±, L3± as L 24 (l), "', 

L 24(4), where L 24(i) <L24 (i+O. We see that Lj+<Lr, 
and that we can always label the lines in Fig. 1 in such 
a way that 

(2.5) 

One may verify that the same superscript j occurs in 
both L2-=L l3 (i) and in L1-=L24(i) j moreover, 
L4+=L13(k) implies L3+=L24 (k) and L 4-=L13 (1) implies 
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La-=L24(l). The three possible arrangements of lines 
given by Eqs. (2.2a,b) and (2.4a-d) are shown in Fig. 2. 

We now consider the surface defined by setting the 
determinant of the matrix (2.1) equal to zero; we 
write, with the notation Yij=Yji, Yii= 1, 

.1 =.1 (Yla,Y24) =det(Yij) =0. (2.6) 

Expansion of the determinant gives 

.1 (YI3,Y24) = 1- L Yil+2 L YiiYjkYik 
i<i i<i<k 

+Y122Ya42+Yla2Y242+YllY2a2- 2Y12Y13Y24Ya4 

- 2Y12Y14Y2aYa4 - 2YlaY14Y2aY24. (2.7) 

We first restrict ourselves to real Y13, Y24; in this case 
Eq. (2.6) defines a curve in the real Y13,Y24-plane. This 
curve, which consists of several branches, will be 
denoted by r. To learn more about r we first compute 
the discriminants of Eq. (2.6). Theorem 3 of Appendix 
B states that if 

.1=AY132+BYla+C=aY242+bY24+C, (2.8) 
then 

W-4AC=4K 1K a, b2-4ac=4K~4 (2.9) 

[cf. Eq. (II,29)]. Equations (2.9) imply that each of 
the lines Y13=L13 (j) and Y24=L24(k) is tangent to r, 
and at only one point. Moreover, there are no other 
vertical or horizontal lines tangent to r. Next, we 
observe that in the expansion (2.7) YlS2 and Y242 occur 
only as (Yl32-1) (Y2i-l). It follows that the lines 
Y13=±l, Y24=±1 are asymptotes to r, and that these 
are the only vertical and horizontal asymptotes. We 
now examine the signs of the discriminants (2.9), and 
conclude that there is one branch of r in each of the 
following five regions: 

(1) Y13::S; Ll3 (1) , Y24::S;L 24 (l) 

(2) Y13~ L13 (4), Y24::S; L24 (1) 

(3) Yla~Lla(4), Y24~L24(4) (2.10) 
(4) Yla::S; L13 (1) , Y24~L24(4) 

(5) L 13 (2) ::S;Y13::S; L 1a (3), L 24 (2) ::S;Y24::S;L24 (8). 

Each of these branches will be labeled by a corre
sponding subscript: r 1, "', r 5• For convenience, we 
shall also refer to r 4 as roo A typical graph of r is shown 
in Fig. 3. 

It will be useful for us to know which of the branches 
r 1, r 2, rds tangent to each ofthe lines YI3=L13 (I) =L2+, 
Y24=L24(l)=L1+. Expressions for the points of tangency 
to the lines defined by L/ are given in Eqs. (II, 27-28); 
e.g., r is tangent to Y13=L2+ at Y24 given by 

Y24= (COSOI2 sin034+cos023 sin(14)/sin(Oa4+014). (2.11) 

The equations for the remaining points of tangency may 
be obtained from Eq. (2.11) by an appropriate permu
tation of indices. Now to determine when r 1 and when 

t Yl3 
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~l r3 I 
(Izl I 

I (Iz 

c I ......... / 
4 : 
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C- D liP' 
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FIG. 3. The curve r. A symbol (2:;) indicates that the given part of 
r is joined to the surface 2:; defined in the text. 

r 4 is tangent to YI3=L2+, we use Eq. (2.11) in special 
cases and observe that as long as the lines of tangency 
are displaced continuously, but do not come into 
coincidence with one another or with the asymptotes, 
the points of tengency will not move from one branch 
r i to another. We summarize the locations of the points 
of tangency to Y13= L2+' Let us write 

8 = 012+°23+°34+°14. (2.12) 

Then, r 4 is tangent to YI3=L2+ if 

8<2'11' and· 014+0a4<'II', (2.13a) 
or if 

8>2'11' and 814+°34>'11'. (2.13b) 

On the other hand, r 1 is tangent to YI3=L2+ if 

8<2'11' and 814+Oa4 >'11', (2.13c) 
or if 

8>2'11' and 014+0a4<'II'. (2.13d) 

Obvious modifications will give the locations of the 
points of tangency to Y24=L1+. The locations of the 
points of tangency to lines Y13=L1a (4) and Y24=L 24 (4l, 

however, will not be of any further interest to us, and 
will not be described here. 

Let us now describe the surface defined by Eq. (2.6) 
with Y13, Y24 complex; this surface will be denoted by 
~. First, consider the fourth degree system of equations 
(a and (3 real, a~O) : 

.1 (Y13,Y24) = 0, 

Y13=aY24+{3. 

(2.14a) 

(2.14b) 

The real solutions of Eqs. (2.14a, b) are the intersections 
of r with the real line (2.14b). We see from Fig. 3 that 
for a fixed a and for {3 varying from - 00 to 00 there 
are ordinarily three intervals on the {3 axis for which the 
equations have four real sets of solutions, separated by 
two intervals 

(2.15) 
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for which the equations have two sets of real solutions 
and two complex conjugate sets. For some values of a 
the real line (2.14b) intersects one branch r i at three 
points near a point of inflection. Then, there are one or 
two additional intervals in which Eqs. (2.14a, b) have 
four real sets of solutions. 

Now, let us select an a~O such that the above 
complication does not occur, and let us select one of the 
intervals (2.15), say (31(a) <(3<{32(a). As {3 varies over 
this interval, the complex solutions of Eqs. (2.14a, b) 
vary over a curve Ca lying on the surface ~. This curve 
joins one branch rj with the arc (Pi-l.jP j.i+1) of r. 
(see Fig. 3). As a varies over the positive or over the 
negative real axis (depending on whether the original 
choice was a>O or a<O, respectively), the curves Ca 

sweep out a surface, which we shall denote by ~j. (We 
also set ~O=~4.) If for a given a and {3 the line (2.14b) 
intersects a single branch r j±1 at three points, then the 
corresponding curve Ca breaks into two parts, one of 
which joins r j to r i±l, while the other joins r i±1 to the 
arc (P j - 1.iP j .i+l) of r •. We see that the complex 
surface ~j joins all or a part of r j to the arc 
(P j -l,jPU +1), and it may also join these curves to a part 
of r j+l and to a part of r j-l. These facts are illustrated 
in Fig. 3. 

Each surface ~ j consists of two disconnected pieces, 
having 1m YI3>O and 1m YI3<O, respectively. We note 
that for a>O in Eq. (2.14b) we obtain ~2 and ~4, which 
have on each piece 1m Y13 and 1m Y24 of the same sign. 
For a<O, we obtain ~l and ~3, which have on each 
piece 1m Y13 and 1m Y24 of opposite signs. 

Let us observe that every point (Y13,Y24) of ~ with 
1m Y13, 1m Y24~O lies on some ~ i; this follows from the 
fact that for such a point we may always find real a and 
{3 with a~O such that YI3=aY24+{3. Finally, the points 
of ~ with one member of the pair (Yl3,Y24) real and the 
other complex are those points of ~ which join ~j to 
~i±I. These points correspond to a=O or to l/a=O 
(a/{3 finite) in Eq. (2.14b). It is clear from Fig. 3 that 
they all lie on the boundary of the physical sheet of F, 
i.e., on the hyperplanes (1.9). Our description of the 
geometric configuration of ~ is now complete. 

3. REGULAR AND SINGULAR POINTS OF 
THE SURFACES 

In this section we determine which points of the 
surfaces described in Sec. 2 are regular and which are 
singular for the four-point function F. The method 
which we use in this section are largely, but not entirely, 
those described in Appendix A. 

As long as we restrict our discussion to the singu
larities of the successive integrals in the definition (1.3) 
of F, we can use the discussion of Appendix D to 
strengthen some of the conclusions of Appendix A. 
Lemma lA then gives two conditions, and the fulfill
ment of one of these is both necessary and sufficient for 

the existence of a singularity of an integral. Lemma 2A 
can likewise now be stated in a stronger form. 

It is convenient to introduce symbols which signify, 
with reference to a particular singularity of a given 
n fold integral, how many times each of the conditions 
(1) and (2) of Lemma lA is fulfilled in the successive 
integrations [the condition (1) requires the integrand 
to have an end-point singularity, and (2), to have 
coincident singularities]' We shall say that a given 
singularity is of type (EkCn-k) if condition (1) is ful
filled k times, and condition (2), n-k times. For the 
function F we have singularities of types (ECl), 
(EIC2), and (C3). 

. We have emphasized in Appendix A that in con
Jinuing an integral analytically, it may be neces~ary 
to deform the contour. In general, an analytic continua
tion of the expression (1.3) gives the result 

where A l, A 2(Xi), and A 3 (Xi,Xj) are appropriately 
chosen arcs between 0 and 1, between 0 and 1-Xi, 
and between 0 and 1-xi-xh respectively. We indicated 
explicitly the dependence of the arcs on the variables of 
integration. 

We recall from II that D~O if Y13,Y24> 1, and in this 
case we take the contours along the positive real axes. 
The following lemma is evident. 

Lemma 1. Let F be continued analytically from the 
region where Y13,Y24> 1. Let Xi=XP be a fixed number, 
O::=;xP::=; 1, and let us assume that along the path of 
continuation 

(3.2a) 

for 

(3.2b) 

Then the contours A 2(xn, A 3(xP,xj) of Eq. (3.1) may 
be taken along the real axes. If along the path of con
tinuation D(XiO,xl,Xk;ypq)~O for O::=;xk::=;l-xl-xl, 
then the contour A 3(xP,xl) may be taken along the 
real axis. 

In particular, we see that in continuing to the region 
where 1m YIB and 1m Y24 are both nonzero and of the 
same sign, we may retain the contours along the real 
axes. Then D~O in the region of integration, and F 
is analytic. 

Let us consider now the singularities of the type 
(E2Cl); these are restricted to the planes defined by 
Eqs. (2.2a-b). For Eq. (2.2a), Y13= ± 1, the singularities 
of F are associated with zeros of D at the endpoints 
of integration X2=X4=O. From Eqs. (1.3) and (1.4) 
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we obtain 

where X=O for X2=X4=0. We see that for X2=X4=0, 
the integrand is regular if Y13= 1; while if Yl3 ---+ -1 then 
the integrand has poles in the xl-plane which approach 
XI=t from opposite half-planes. Lemma 1 states that 
the contour in question may be taken along positive 
real axis. We conclude that F is singular at Y13= -1, 
Y24 arbitrary. The case of Eq. (2.2b) is analogous. 

Next we consider singularities of type (EIC2); these 
are restricted to planes defined by Eqs. (2.4a-d). For 
Eq. (2.4a), Y13=L 4±, the singularities of F are associ
ated with zeros of D at the endpoint X4=0. As pointed 
out in II, our problem reduces to that of the vertex 
function. Note the Lemma 1 allows us to use real con
tours for X4=0, as in the foregoing. An analysis of the 
vertex function (I and Appendix A of II) shows that 
we do not have singularity at Y13=L4-, and we have a 
singularity at Y13= L4+ of type (EIC2) if and only if 

(3.4) 

(we assume that L4+~-1). Hence F is singular at 
YI3=L4+, Y24 arbitrary, if the inequality (3.4) holds; F 
has no singularities of type (EIC2) (and associated with 
the endpoint X4=0) at YI3=L 4-, nor at YI3=L4+ if 
the inequality (3.4) does not hold. The treatment of 
Eqs. (2.4b-d) is analogous. 

It should be pointed out that the conclusions of the 
last two paragraphs, even if expected on the basis of 
the results of I and II, actually constitute an extension 
of these results. In I and II only the thresholds of 
spectral representations are determined. Our conclusions 
make some assertions about the singularities of F in the 
region where it is complex, and in particular, about the 
singularities of the spectral function 1m F [see Eq. 
(II,S)]' We also note that our discussion can be applied 
directly to determine the singularities of the vertex 
function Fv (YI3), or of the associated spectral function 
1m F •. 

The remaining singularities of F are of the type (C3), 
and they lie on the surface ~ (which includes the curve 
r). There are two properties of these singularities 
which we should mention. First, it is pointed out in 
Appendix A, and illustrated in Fig. 9, how analytic 
continuation around a singularity of type (EI) can alter 
the nature of a singularity of type (0) in a particular 
integral. Thus, if we approach a point (Y13,Y24) of r 
with 1m Y13 ---+ O±, 1m Y24 ---+ O± and with 1m Yl3 ---+ O±, 
1m Y24 ---+ OT, F may be singular at (YI3,Y24) in one case 
and not in the other, and these two limits have to be 
investigated separately. We shall speak of these two 

cases as limits from corresponding and from opposite 
half-planes, respectively. 

The second property is the following: Remark 1 of 
Appendix A, properly generalized, states that analytic 
continuation around a singularity of type (C3) does not 
alter the nature of another singularity of a particular 
integral. We see that although the definition (1.S) of 
the physical sheet of F is ambiguous in case F has 
branch points within the physical sheet, nevertheless 
one can unambiguously determine the points of singu
larity of F in the physical sheet.12 We do not consider 
the continuation of F around singularities of types other 
than (C3) since these all lie on the boundary of the 
physical sheet; see (1.9). 

We proceed to determine the singularities of F on ~. 
We recall from II that F is analytic in a certain region 
R of the real Y13, Y24-plane; R is bounded by lines 

(3.5) 

(L13= -1 or L2+ or L4+, L 24= -1 or L 1+ or L3+) and 
sometimes also by arc (P01P 12) of rs. We see that F has 
no singularities on r 3, and, by Lemma 2A, it has none 
on ~3. Moreover, for Y13> L I3 (3) the limits 1m Yl3 ---+ 0+ 
and 1m Yl3 ---+ 0- are always equal, and at any point of 
r 2 either both limits described above give singularities, 
or neither limit gives singularities. A similar conclusion 
holds for r 4. Next, F is regular at (YI3,Y24) on the 
physical sheet if 1m Y13, 1m Y24 are both different from 
zero and of the same sign, as we pointed out in connec
tion with Lemma 1. It follows that F has no singu
larities on ~2 and on ~4, and on those points of r 2 and 
r 4 which are joined to ~2, ~3, or ~4. 

We still have to discuss singularities on r l, r 5, ~I, 

and on those points of r 2 and r 4, which are joined to 
~I. We shall make use of the following lemma.13 

Lemma 2. Every point of r l other than a point of 
tangency to a line of singularities is a singular point 
of F when one of the two limits described above is 
taken, and is a regular point when the other limit is 
taken. The same conclusion holds for rs if the 
thresholds are Ll3 = LI3 (3) , L24 = L24 (3) [case (iv) 
below]. 

Proof. We first give a proof for the case in which the 
curve in question is tangent to one of the (singular) 
lines YI3=L I3 , Y24=L 24. Let us assume for definiteness 
that we are dealing with r l which is tangent to the line 
Y13=L13=Lk+. [We note that r l is tangent to a line of 
singularities if and only if we have case (ii) described 
below.] Let us write 

I 

F(Y13,Y24) = i dXk!(Xk,Y13,Y24). (3.6) 

12 Oehme (footnote 7) has given a detailed discussion of the 
physical sheet in the case of the vertex function. 

13 This lemma is analogous to a conclusion of Kallen and 
Wightman (footnote 2) who show how the singular nature of the 
points of their hypersurface <1>=0 changes when the hypersurface 
crosses a branch cut which delimits the physical sheet. 
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At the point of tangency of r l to YI3=L13, f has coin
cident singularities of type (C2) at Xk=O. (The presence 
of one singularity follows from our assumption that the 
line YI3=Lk+ is singular. Moreover, Lemma 2A implies 
that upon a small change of parameters the singularity 
splits into two singularities of type (C2); we note that 
there are no (EICI) or (E) singularities with (YI3,Y24) 
near the point of tangency and Xl near zero.) If a point, 
say (Y13°+ie, Y24°+ie), in the limit e ~ 0+ is singular 
for F, and lies on fl near the point of tangency, then 
f has coincident singularities which are on opposite 
sides of the contour. As we displace YI3 from YI30+ie 
around the branch point Y13=L I3 to YI30-ie, as in Fig. 
9(a), then the singularities of f are displaced as shown 
in Fig. 9(b), and we do not have a singularity at 
(YI30-iE, Y24o+ie) in the limit E ~ 0+. If the point 
(YI30+ie, Y24o+ie) is regular for F in the limit e ~ 0+, 
then f also has two coincident singularities, but now 
these lie on one side of the contour, or miss the con
tour. We may now apply the same argument as pre
viously. Lemma 2A allows us to extend our conclusion 
to the remaining points of r i • (If fl is also tangent 
to the line Y24=L 24, then it is necessary to repeat the 
above argument with reference to the new point of 
tangency.) 

The above argument also applies to r6 if we have 
case (iv). To prove the lemma for r l if r l is not tangent 
to one of the lines YI3=L I3 , Y24=L 24, we proceed as 
follows. We choose a suitable point (Y13,Y24) of r 1 and 
such external masses that the specified tangency 
conditions hold, and then we vary the external masses 
to their desired values and use Lemma 2A. We then 
use again Lemma 2A to extend our results to all of r 1 

with the desired mass values. The validity of this 
procedure can be checked in detail for each of the cases 
listed below. [See the transitions between the cases 
described in Appendix C; see also the Remark following 
the description of case (iv).] The lemma follows. 

We now discuss various cases separately. The cases 
listed below correspond to the various cases of II, 
except that we made two separate cases, (ii) and (iv), 
of case (ii) of II. A description of the real region R of 
analyticity for the various cases is given in detail in II. 
We recall Eq. (2.12): 8=012+°23+°34+°14, and we shall 
call two angles Oij and Okl adjacent if they have one 
subscript in common. 

Cases (i) and (ii): 8<21T. In these cases the region R 
is bounded by the lines YI3 = L13 = L13 (1) or -1, and 
Y24=L 24=L24 (1) or -1. We have case (i) if the sum of 
any two adjacent angles is less then 1T, and then LI3=L24 
= -1. We have case (ii) if the sum of angles in a pair 
of adjacent angles is greater than1T, and then at least 
one of the two equations LI3=L13(1), L 24=L24 (I) holds. 

In these cases there are no singularities on f6, and 
therefore there are none on r l (Lemma 2A). If we make 
the extension from r6 to fl via 2:1, then there will be no 
singularities on r l either. We now recall that the 

FIG. 4. A Feynman diagram with 
8>2".+2 min (IIi;). The binding 
energy of A inAlJ3 was taken as 0.2 
Mev [B. W. Downs and R. H. 
Dalitz, Phys. Rev. 114, 593 
(1959)]. 

construction of 1:1 depended on the use of a<O in Eq. 
(2.14b). We conclude that for those points of r l which 
are joined to 1:1, F is regular if we take the limit from 
opposite half-planes, and singular if we take the limit 
from corresponding half-planes (Lemma 2). Moreover, 
one sees, by following a similar argument, that the 
situation is reversed for those points of r l which are 
joined to 1:2 or to 1:4. We also observe that F is always 
regular on r 2 and f 4. 

Case (iii): 21T<8<21T+2 min (012,023,034,014). In this 
case the lines YI3=LI3 UJ , Y24=L 24 (k) are ordered as in 
Fig. 2, case (a) or (b), and R is bounded by lines 
Y13=L I3 (2), Y24=L 24 (2), and by arc (POIP 12) of r6 (Fig. 3). 
Thus, there are singularities on arc (POIP I2), on 1:1, 
and on those points of r 2 and r 4 which are joined to 
2:1 [see the relations (2.13a-d) and Fig. 3]. Moreover, 
at every point of r h F is singular if we take the limit 
from opposite half-planes, and regular for the limit from 
corresponding half-planes. [We note that r l is tangent 
to Y13 = L I3 (1) or to L24 = L24 (1) if and only if F is regular 
on the line in question. This statement is also valid for 
case (iv). For cases (i) and (ii) the situation is reversed.] 

Case (iv): 8>21T+2 min(012,023,034,014). In this case 
the lines Y13=L13(il, Y24=L 24 (k) are ordered as in Fig. 
2(c), and R is bounded by lines YI3=L13 (3), Y24=L24(3). 
Arguments a.nalogous to those used above lead to the 
following conclusion: F is singular on arc (P23P34) for 
limits from corresponding half-planes, on arcs (P I2P 23) 
and (P3~46) and (Lemma 2A) on arc (POIP 12) for limits 
from opposite half-planes, on 1:1, on r l for limits from 
opposite half-planes, and on r 2 and r 4 at those points 
which are joined to 2:1. F is regular on r l and on r6 if 
the other limits than specified above are taken. 

A Feynman diagram which falls into case (iv) and 
which represents a physical process is shown in Fig. 4. 

Remark. The above conclusions seem to lead, but do 
not, to certain inconsistencies. One of these confusing 
points is as follows. Let us suppose that r l is tangent to 
a line, say Y24=LI+, which is not singular. If (YI3,Y24) is 
at the point of tangency, then there are coincident 
singularities at XI=O, and it may appear that there 
should be endpoint singularities if (Y13,Y24) is displaced 
from the point of tangency along the line Y24 = LI +. How
ever, we would like to point out that the singularities at 
Xl = 0 need not be at the endpoint of integration, since 
other singularities in the Xl-plane may impose a de
formation of the contour, and the coincident singu
larities at Xl =0 may be separated from the endpoint 
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:Xl=O by a branch cut. Thus there is no inconsistency. 
The case of singularities of r5 in case (iv) is analogous. 
It is obvious that in such cases it is allowable to use 
Lemma 2A to determine the continuation of singu
larities past the point of tangency. 

In Sec. 2 we pointed out that the points (Y13,Y24) of ~ 
with one member of the pair real and the other complex 
join two different parts ~j and ~j±l of ~. In passing 
from ~j to ~j±l through these points we cross the 
boundary of the physical sheet [see (1.9)J. Thus the 
fact that we may have singularities on ~l but not on 
1:2 or ~4 does not contradict Lemma 2A. 

We make two general observations concerning the 
:singularities of F, in addition to the observation 
-expressed in Lemma 2. For the first, we note that all of 
the curves and surfaces with singularities other than ~l 
lie on the boundary of the physical sheet. We see that 
F has no singularities in the physical sheet if and only 
if 8~2'11"j see Appendix C for the case 8=2'11". . 

The second observation is the following: If a gIven 
branch of r is tangent to a line of singularities Yik=L/, 
then we have singularities on r (for either of the two 
limits) on one side of the point of tangency, and not on 
the other side. This observation can be easily understood 
if we realize that for the point of tangency one of the 
sets of coincident singularities occurs at the endpoint 
of the contour. 

4. APPLICATIONS 

Mandelstam's Representation 

On the basis of Sec. 3 we see that if 8~2'11", then a 
double application of Cauchy's theorem establishes the 
validity of Mandelstam's double integral representation, 

1 fLI3 fL.. p(v,w) 
F(Yl3,Y24)=- dv dw , 

r _00 -oc (v-Y13) (W-Y24) 
(4.1) 

where 

p(Yla,Y24) = -llim •.• '~o+[F(Yla+i~, Y24+il) 
-F(Yla+i~, Y24-i~')-F(Y13-i~, Y24+iE') 

+F(Yla-i~, Y24-i~')]. (4.2) 

On the other hand, if 8> 2'11" then the existence of 
singularities of F for complex Y13, Y24 precludes the 
validity of a representation such as in Eq. (4.1). Our 
conclusions are in agreement with those obtained by 
Mandelstam.4 

Our techniques may also be used for a further study 
of representations such as in Eq. (4.1). To give an 
illustration, we give a new proof of the fact4 that in case 
(i) the function p is nonzero in the region bounded by 
r l rather than in the entire region - 00 <Yla,Y24< -1. 
We write, for Yla,Y24> -1, 

(4.3) 

where for Yl3 < -1 j -1 <Y24, 

g(Yl3,Y24) = (2i)-l lim 
.---+0+ 

X[F(Y13+i~, Y24)-F(Y13-i~, Y24)]. (4.4) 

For the specified values of Yl3 and Y24, g is the imaginary 
(absorptive) part of F. The next step is to constru~t a 
spectral representation for g(Y13,Y24), where Y13 IS a 
parameter less than -1. For this purpose we define g 
for other values of Y24 by analytic continuation from the 
values Y24>-1. 

Equation (4.4) shows that all singularities of ~ lie ?n 
the surfaces described in Sec. 2. We are pnmanly 
interested in the dependence of g on Y24, and the only 
points which we need to investigate are Y24= -1 and 
the intersection of the line Y13= const. with r l . Let us 
show that g is regular for Y24= -1. We use the relation 

lim (-l)nn![ (II (x+i~)n+l-11 (x_i~)n+lJ 
.---+0+ 

= -2'11"ill(n) (x), (4.S) 

which follows by differentiation from the case n=O. 
We obtain 1 1 1 il 
g(Y13,Y24)='II"i dXli dX2i dX3 dX4 

o 0 0 0 

XIl(l-Lxk)Il'(D)/IImi. (4.6) 

Let us look more closely at the region where D 
vanishes. We rearrange the terms of Eq. (1.4) as follows: 

D= (Xl-Xa)2+2xlXa(Yla+ 1)+ (X2-X4)2+2x2X4(Y24+ 1) 
+ 2Xl (X2Y12+ X4Y14) + 2xa (X2Y2a+ X4Y34). (4.7) 

Since we are dealing with case (i), we have 

(4.8) 

An examination of Eq. (4.7) and of the inequalities 
(4.8) shows that there exists '7>0 which depends on 
Y13 but which does not depend on Y24 (for Y24> -1) 
and is such that D>O when 0~Xl,X3~'7 and 0~X2, 
X4< 1 (with L X;= 1). Lemma 1 (of Sec. 3) now allows 
us-to take the contour along the real axis for the 
integral over X2 and X4 when 0~Xl,X3:::;'7, and we see 
that D>O when X2 and X4 vary over this contour. 
Furthermore, the boundaries of the region with D=O 
(or, expressions defining these boundaries) depend 
analytically on Y24 for Y24> -1, but at Y24= -1. they 
are enlarged in a discontinuous way. We now WIsh to 
continue g analytically from Y24> -1 to Y24= -1- ~o 
(EO greater than zero and sufficiently small). To do so, 
we must continue analytically the boundaries of the 
region of integration, and we see that in thi~ continua
tion the boundaries do not reach the endpomts Xl = Xa 
= O. Since the singularities of F at Y24 = -1 are as
sociated with these endpoints of integration, we 
conclude that g is regular at Y24=-1. 
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FIG. 5. The regions 
with nonzero spectral 
functionsPij. We assume 
case (i) in each region. 

We also conclude that g is singular at the point 
Y24= Y240 where (Y13,Y240) lies on f1,14 and that we have 
the following spectral representation for g (for Y13<-1 
and Y240 < Y24; Y240 < - 1) : 

Our assertion about the function p now follows. 

Spectral Representations for Exchange 
Scattering 

In II the spectral representations were considered in 
which the energy (s) of the process or the square of the 
four-momentum transfer ( - t) is held constant. Mandel
starn, however, has pointed out a basic symmetry 
among the three invariants s, t, and u, (-u) being the 
square of the four-momentum transfer for exchange 
scattering. From this symmetry arises the interest in 
spectral representations with u constant. 

The interest in such spectral representations arises 
more directly in connection with momentum transfer 
limitations of dispersion relations. Consider a process 
for which the complete scattering amplitude admits a 
double integral representation of the form (4.1). Then, 
following Mandelstam,3--6 there are three associated 

(a) ( b) ( c) 

FIG. 6. N·N diagrams with specified nonzero spectral functions Pi; 
for (a) P13 ;CO, for (b) P23 ;CO, and for (c) P12 ;CO. 

----
14 An entire function which vanishes at infinity is identically 

zero; see E. C. Titchmarsh, The Theory of Functions (Oxford 
University Press, New York, 1939), 2nd edition, p. 165. We also 
note that the existence of a singularity of gat Y24 = Y240 implies a 
part of Lemma 2 (Sec. 3), and is implied by that lemma. 

spectral functions Pij which are nonzero in the regions 
shown in Fig. 5. Some of the Feynman diagrams which 
contribute to the three functions P;j in the N - N case 
are shown in Fig. 6. A single fourth-order diagram as in 
Fig. 1 has a nonzero spectral function in only one of 
these regions, as we see from Eq. (4.1). 

Consider now the process of Fig. 1, with P12 and P23 
incoming (positive timelike) and P34 and Pl4 outgoing 
(negative timelike). Then 

s= (p12+P23)2, t= (p12+P14)2, u= (p12+P34)2. (4.10) 

These invariants are linearly related as follows: 

(4.11) 

Let F12 and F13 be two partial Feynman amplitudes 
which give nonzero contributions to P12 and P13, respec
tively (we can take F13=F). We see from Fig. 5 that a 
spectral representation for F12 with t constant is 
analogous to a spectral representation for F 13 with u 
constant. (This is also suggested by Fig. 6.) Thus it 
appears that the study of spectral representations in 
the fourth order with u constant is a first step toward 

FIG. 7. The limits of 
integration in Eq. 
(4.13). 

understanding spectral representations (or dispersion 
relations) for large space-like momentum transfer. 

Equation (4.11) with u constant is equivalent to 

(4.12) 

for some real constants l' and A, with 1'>0. Now we 
conclude from Sec. 3 that in cases (i) and (ii) we have 
for any real A 

1(fl' fOO) dx F (A - "(Y24, Y24) = - + -- lim 
7r -«> p x- Y24 .-->0+ 

Xlm F(A-,,(x-if, X+iE). (4.13) 

The limits of integration f./., v depend on the boundaries 
of the real region R of analyticity of F (Fig. 7). If A is 
sufficiently small then the integral extends over the 
entire real axis. 

We see from Eq. (4.13) that the points (Y13,Y24) 
which are arguments of F approach the curve r from 
opposite half-planes, and thus, in case (i) the function 
1m F of Eq. (4.13) is regular on fl when E=O. Thus we 
may indefinitely continue the functions of Eq. (4.13) 
analytically in A. It is interesting to speculate whether 
this conclusion is a special feature of perturbation 
theory or whether it has a more general validity. At 
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present all attempts to establish dispersion relations 
without recourse to perturbation theory are applicable 
only to limited values of momentum transfer,15 because 
the singularities of the absorptive part of the scattering 
amplitude for larger values of momentum transfer a!e 
not yet understood.16 

In case (ii), the function ImF [of Eq. (4.13)J has 
singularities on that part of r 1 which is joined to the 
surface 2;2 or to 2;. (see Fig. 3). In cases (iii) and (iv) , 
the representation (4.13) is not valid for those 
values of A for which the system of Eqs. (4.12) and 
~(Y13'Y24)=O has solutions lying on 2;1, but this repre
sentation is valid for all other values of A. 
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APPENDIX 

A. Determination of Singularities of Integrals 

Necessary Condition for Singularities 

The following lemma is implied by the discussion 
of Eden:1o 

Lemma lA. Let an arc A be given in the complex z 
plane as a contour of integration, let N denote a 
neighborhood of the contour A, and let D be a domain 
in the complex c plane. Let f(z,c) be regular in either 
variable, except for a finite number of isolated singu
larities or branch points, for any value of the other 
variable, when zEN, cill. (We have to include the possi
bility that the domains D and N extend over more than 
one Riemann sheet of J.) Then 

w(c) = f f(z,c)dz 
A 

(A.1) 

can be singular at c= COED only if one of the following 
two conditions holds: 

15 H. Lehmann, Nuovo cimento 10, 579 (1958). 
16 One can show that the function 1m A corresponding to an 

arbitrary amplitude A can be continued to indefinitely large 
space-like momentum transfers if one assumes that (i) A satisfies 
Mandelstam's representation, and (li) those spectral functions of 
A which are located in the region of P12, see Fig. 5, have no 
tangents which are parallel to their asymptotes. Then the singu
larities on the curves which bound the spectral functions cannot 
occur for limits from opposite half-planes, as otherwise th~e 
-singularities would extend into the complex region. Our assertIOn 
now follows as in the text. 

FIG. 8. Illustration of 
the condition (2) for singu
larities of w (c). 

M, Z -PLANE 

MZ 

(1) f(z,co) as a function of z has a singularity at an 
endpoint of the contour, or 

(2) for Cl in a neighborhood of Co, J(Z,CI) is singular at 
Z=ZO+171 and at Z=ZO-''I2, 

where ZO+111 and Zo-112 lie on opposite sides of the con
tour A, Zo is a point of the contour, and 171,172 --+ 0 as 
CI --+ co. (See Fig. 8.) 

In general, if f(z,c) has singularities at ZI = ZO+111 and 
at Z2= ZO-172, and 171, 112 --+ 0 as c --+ Co, we shall say that 
f has coincident singularities (as a function of z) at 
c= co. We note that if the point z= Zo is not an endpoint 
of A, then in general ZI and Z2 will lie on opposite sides 
or on the same side of the contour depending on the 
chosen Riemann surface of w(c). A typical situation is 
shown in Fig. 9; here w(c) may have a singularity at 
the point P, where C=Co, but not at the point Q, where 
c=co likewise. 

Let us suppose now that f(z,c,~) depends on the 
parameter ~ in the same way as on the other two vari
ables, i.e., in analogy with the specifications of Lemma 
1A. Then w=w(c,~) also depends on ~ analytically. The 
condition that f have coincident singularities will in 
general be equivalent to an equation g(c,~)=O. Let us 
suppose that we have coincident singularities at (co,~o) : 
g(co,~o) = 0, and let us suppose that these singularities 
approach the contour from opposite sides. Then, if we 
vary (c,~) and the contour in such a way that 

(1) the variation is continuous, 
(2) no singularity crosses the contour, 
(3) g(c,~) =0, i.e., the singularities in the z plane stay 

coincident, 
(4) the singularities do not reach an endpoint of the 

contour, 

(al t-PLANE (bl z-PLANE 

MZ 

FIG. 9. (a) Riemann surfaces for wee); e=eo at P and at Q,. and 
R is the branch point associated with the endpoint Ml of mte
gration. (b) The displacement of singularities i',l the z plane when 
e is displaced from a neighborhood of P to a neIghborhood of Q as 
shown in Fig. 9(a). 



                                                                                                                                    

158 JAN TARSKI 

we still shall have coincident singularities approaching 
the contour from opposite sides. (Note that we must 
keep the endpoints of the contour fixed in order to retain 
the same function w.) If we start with coincident singu
larities which approach the contour from one side, or do 
not approach it at all, and if we vary (e,~) and the con
tour as described, then an analogous conclusion holds. 

Furthermore, we can effect the analytic continuation 
of w~,~) [or of w(e)] by satisfying conditions (1) and 
(2). These considerations lead to the following lemma: 

Lemma 2A. Let g(eo,~o) = 0, and let us continue w(e,~) 
analytically from (eo,~o) to (cI'~I) in such a way that the 
conditions (3) and (4) are satisfied. If the coincident 
singularities do not approach the contour from opposite 
sides for (co,~o), then w is regular at (CI,~I)' If the coinci
dent singularities approach the contour from opposite 
sides for (co,~o), they also approach the contour from 
opposite sides for (eI,~I), and hence w may be singular 
at (CI,~I)' 

The above lemmas, as well as the considerations that 
follow, can be readily generalized to functions involving 
a larger number of complex variables and to multiple 
integrals. 

Remark 1. Let us consider a surface S of singularities 
with points satisfying g(c,~)=O, as described in Lemma 
2A, and let (c',e)eS. Let us continue w(c,~) around the 
point (c',e). Then the new branch of the function w, 
which is obtained by such a continuation, also has 
singularities on the surface S. Moreover, the singu
larities associated with endpoints of integration are the 
same for the two branches of w. (This fact was implied 
in the statement of Lemma 2A: if w is singular on S, 
then the variation of (c,~) subject to the condition 
g(c,~) =0 is to be understood as a limiting process 
which may involve several branches of w.) The abov~ 
fact can be understood from Fig. 8; a continuation of w 
as described above implies a displacement of the 
singularities which are near coincidence, and of the 
contour, but the essential aspects of the figure would 
remain unchanged. 

Remark 2. We see from Lemma lA that the entire 
singular part of the function w at the singularity 
c= Co is obtained by integrating f(z,c) in the neighbor
hood of one, or possibly a few, points. 

Remark 3. We make here one observation regarding 
the singularities of multiple integrals. The first inte
gration, say over a, has singularities which are as
sociated with neighborhoods of points ah .•• , ak. In the 
next integration we may expect to find coincident 
singularities where one singularity is associated with 
a=a'i, and the other, with a=ajr6ai. However, such 
coincident singularities do not lead to a singularity of 
the integral: We may write the multiple integral as a 
sum of two terms, where the first includes integration 
in a neighborhood of ai, and the other, in a neighborhood 
of aj. Neither of the two terms can have a singularity 

arising from the coincidence mentioned in the foregoing r 

and so the sum cannot be singular. 

A Sufficient Condition for Singularities 

We do not consider in this paper the general question 
whether the fulfillment of one of the two conditions of 
Lemma lA is sufficient for the existence of a singularity" 
or else what additional conditions must be imposed. 
However, we give for reference the theorem which was, 
used in I and II for the determination of singularities. 
This theorem has also been used by a number of other 
authors, but no published proof is known to us. This 
theorem' as stated is applicable to all the Feynman 
amplitudes discussed in Appendix B, but a more 
general formulation can be given. 

Theorem 1. Let a bounded region V of integration in 
the Euclidean n space be given. Let g(UI, .. ,Un) =g(u), 
h(u), and k(u) be three real continuous functions in V 
such that 

g(u)+zh(u»O and k(u»O, (A.2) 

whenever ueV and 0<z<5, and such that g(u)=O for 
some ueV. Let p>O and let [g(u)+zh(u)]P>O for 
ueV, O<z<c5. Then the function 

f. 
k(u)dTu 

G(z) = 
v [g(u)+zh(u)]p 

is singular at z=O. 

(A.3) 

Proof. Let us first observe that g(u) ~ 0 for ue V, and 
that the sets 

VO={UEV:g(U)=O}, Wo={uEV:h(u):5;O} (AA) 

are closed and disjoint. These facts imply that G (z) is 
regular for 0<z<5 and for z with 1m z r60.17 Let 
t>O, and let 

Vl<={ueV:g(u)<e}, V2t={ueV:g(u)~E}. (A.S) 

The set Vo is nonempty, and it follows that Vit has a 
positive measure. We may write G=GI.+G2t , where 

i 
k(u)dTu 

Gj,(z) = , j=I,2. 
Vj. [g(u)+zh(u)]p 

(A.6) 

The function G2• is regular at z=O, and we shall examine 
the function Gl< more closely. The fact that the sets 
Vo and Wo are closed and disjoint implies that for 
sufficiently small E there exists m>O such that 

(A.7) 

Let ~ satisfy O<~<i5; GIt(z) has a power series 

17 A ?et~ed proof of this fact has been given by Taylor (see 
work Cited In footnote 8, Appendix). An intuititive argument de
pends on the observation that for such z the denominator in the 
integral of Eq. (A.3) does not vanish. 
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expansion around X,18 
Q() 

Gle(Z) = L: (-l)n,8,,(z- X)n, 
n=O 

where 

,8,,= (-l)nG I .(n)(X)/n! 

pr(n+p) 

n(n-l)!r(p+1) 

f 
k(u)dTu 

X . 
VI. [g(u)+M(u)]p{[g(u)/h(u)]+X In 

(A.8) 

(A.9a) 

(A.9b) 

We construct numbers an such that an~,8n by taking 
the maximum values of [g(u)/h(u)]+X and by omitting 
the factor r(n+p)/(n-l) !r(p+l) ~ 1 

P f k(u)dTu 
a (A.l0) 

n n[(e/m)+x]n Vh [g(u)+M(u)]p' 

The power series 
00 

L: (-l)na n (z_x)n (A.H) 
n=O 

has the radius of convergence (e/m)+X (note that 
limn-+oonl/n= 1), and our argument is valid for any 
E>O. It follows that a power series for G(z) around the 
point X must have a radius of convergence r not greater 
than X. On the other hand, our previous remark about 
the regularity of G(z) implies that r~A. Thus r=A, and 
this conclusion is valid whenever O<X<!o. The 
existence of a singularity of G(z) at z=O now follows. 

B. On the Singularities of Certain Feynman 
Amplitudes 

We consider now the nth order Feynman amplitude 
associated with the diagram consisting of n external 
momenta joined by a single closed loop and with no 
other internal lines, as in Fig. 10. We show in this 
appendix that all the singularities of such an amplitude, 
considered as a function of the invariants, lie on hyper
surfaces which can be found by setting appropriate 
determinants of invariants equal to zero. This result 
for the vertex function, and for certain singularities 
of the four-point function, was obtained in reference 2 
and in II, respectively. [The hypersurface <1>=0 of 
work cited in footnote 2, Appendix III, is precisely the 
hypersurface K 4=0, see Eq. (2.3), if the variables are 
properly identified.] We also give in this appendix one 
important property of such determinants. 

Let us define for 1 ~i<j~n 

P,j= Pi,i+l+P,+1.i+2+· .. +Pi-I,j. (B.l) 

18 For needed facts from the theory of functions see, e.g., 
Titchmarsh, work cited in footnote 13, especially Chapters I and 
VII. 

FIG. 10. Feynman dia
gram with a single 
closed loop. 

The amplitude M n associated with the diagram of 
Fig. 10 can be written as followsll : 

n 

Do= L: a,mr- L: a,ajpi!. (B.3) 
i=l i<i 

We introduce quantities Yij as in II 

p.!=mr+m!-2m.mjYij for i<j, (B.4a) 

Yji=Yij, Yii= 1. (B.4b) 

We further define Xk by 

(B.5) 

If we require that L: ai= 1, then we can find the inverse 
transformation 

(B.6) 

In terms of the new variables, Do takes the following 
form (we again use the condition L: ai= 1): 

Do=D/{L:(xj/mj)}2, (B.7) 
where 

n n 

D= L: xr+2 L: XiX,Yij= L: YijX,.Xj. (B.8) 
i=l i<i i.i=l 

The existence of the inverse transformation (B.6) 
implies that the transformation has a Jacobian J~0.19 
We now obtain 

1 1 

M n = (const.) i dXl'" i dXn 

{L:(Xk/mk»)2(n-2) o(l-L: Xk) 
X (B.9) 

J Dn-2 

According to Appendix A, we may have a singularity 
if in the integration over each variable Xi the integrand 

19 The denominators in Eqs. (B.S) and (B.6) need not be real 
and positive since it may be necessary to deform the contours. 
However, unless the zeros of D result in a singularity of M ft, we 
may always choose such contours that the denominators are 
different from zero, and then J ;;<!O. 
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has coincident singularities, or if the integrand is 
singular at one endpoint (only Xi=O is relevant, as we 
see by continuation from the region where each 
Yij> 1). We say, as in Sec. 3, that a given singularity 
is of type (EkCn-H) if in the (n-1) fold integral 
endpoint singularities occur k times, and coincident 
singularities, n-k-l times. 

Theorem 2. The singularities of M l' which are of 
type (Cn-I) lie on the hypersurface det (Yij) = O. The 
singularities of M n which are of type (EkC1'-k-I) and 
are associated with the boundary Xil=··· =Xik=O 
lie on the hypersurface det (Vij) = 0, where (Vij) is the 
(n-k)X(n-k) principal minor of (Yij) obtained from 
(Yij) by deleting rows and columns with indices 
ii, ... , i k • 

For the proof of the theorem we need the following 
fact regarding quadratic polynomials. Let 

n 

q «(30, .. ,(31') = L: O'.ij(3;/h 
i,i={) 

where O'.i;=O'.ji. For inhomogeneous polynomials we set 
(30= 1. Let us define 

(B.ll) 

where q=Aj(3!+Bj(3j+Ch and where Ah Bh and Cj 
are independent of (3;. 

Lemma lB. Let q be given by Eq. (B.lO) with (30= 1. 
Let us write 

R «(3i+I)R «(3i+2) ... R «(31')q = A ,(3/+ BJ3i+C i. (B.12) 

Then 

R «(3I)R «(32) ... R«(31')q= (_1)n(n+I)/22 n(n+l) 

XA1'n-IAn--In-2 .. ·A2 det(O'.ij). (B.13) 

A proof by induction is straightforward. 
Now let us prove the first part of the theorem. 

Elimination of the 0 function in Eq. (B.9) by integration 
over Xn gives 

1'-1 

D= L: Ui;XiXh 
i.i=O 

(B.14) 

where Xo= 1 and (Ui;) is a matrix such that det(uij) 
=det(Yi;). The integral over Xn-I can have a (CI) 
singularity only if R(xn--I)D= O. Similarly, the integral 
over Xn-2 can have a (CI) singularity only if the (CI) 
singularities of the integrand are coincident (see 
Remark 3 of Appendix A), or if R(Xn-2)R(xn_I)D=0. 
We continue this process j if the coefficient of xl' 
vanishes at a certain point, then the singularity of 
M n is not of type (Cn-I) and our hypothesis is contra
dicted. The first part of the theorem follows now from 
the lemma. The second part follows from the first if 
we observe that the problem for the second part is 
formally the same as the problem for the first part, 
aside from the number of variables. This completes the 
proof. 

A determinant of a symmetric matrix, such as 
described in Theorem 2, is a quadratic in each of the 
invariants. It may be useful to know the discriminant 
of this quadratic (e.g., to find the tangents which are 
parallel to the coordinate axes, as was done in Sec. 2.) 
We now determine these discriminants. 

We start with the Jacobi ratio theorem for 
determinants.2O 

Theorem. Let (a,j) be a nonsingular nXn matrix. 
Then the determinant of any minor of (aij) divided by 
the determinant of the complementary minor of the 
inverse matrix (b ij) equals det(ai;). 

In particular, let us assume (without loss of 
generality) that the minor of (a,;) is defined by the 
last n-r rows and columns. We know that bpq 
=Apq/ det(a,;), where Apq is the cofactor of the p,q 
entry of (ai;). Then the foregoing theorem asserts that 

=det(aij), (B.15) 
or 

{det[ (akl)k,l>r]) {det(ai;)} r-I 
=det[(Apg)p,qSr]. (B.16) 

We now consider a symmetric matrix (Yij). (The 
condition Yii= 1 is not necessary for us. Neither is the 
condition that (Yi;) be nonsingular, since Eq. (B.16) is 
valid, by continuity, for singular matrices as well.) 
Let Ypq be the cofactor of the p,q entry of (Yi;). The 
symmetry of (Yi;) implies that Y pq= Yqp. We also 
write K p (n) = Y pp, to conform to the previous notation. 
Equation (B.16) with r= 2 now states 

det[ (Ykl)k ,1>2J det (Yi;) =KI (n) K 2(n) - Y 122. (B.17) 

We assume that the quantity YI2 is a variable, distinct 
from all other Yi; (except Y21). Then the determinant 
(Yi;) is a quadratic in Y12, and upon writing 

(B.18) 

we easily see that 

(B.19) 

Equations (B.17)-(B.19) now give at once bL 4ac 
= 4KI (n) K 2 (n). These considerations of course apply to 
arbitrary Ypq, and we obtain the following theorem: 

Theorem 3. Let (Y,;) be a symmetric matrix. Let 
K I(n) be the cofactor of the l, l entry of (y.;). Let Ypq, 
p<q, be a variable distinct from all other Yi; (except 
yqp), and let us write det(Yi;)=AYpi+BYpq+C. Then 

B2_4AC=4Kp(n)Kq(n). (B.20) 

20 H. W. Turnbull, The Theory of Determinants, Matrices, and 
Invariants (Blackie and Son Ltd., London, 1945), 2nd edition" 
p.77. 
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c. Dependence of F on External Masses 

Kallen and Wightman2 have studied the analytic 
properties of the vertex function as a function of all 
the kinematical invariants of the process, with the in
variants complex. In case of the function F, the invari
ants include the external masses in addition to those 
considered in the main part of this paper.2! Treating all 
of these invariants as complex would increase the num
ber of complex variables to six, and these may be taken 
as just the Yij if the internal masses are held constant. 
We may point out that Theorem 2 (of Appendix B) 
applies to all the invariants of a given process, and in 
principle our method can also be applied to the study 
of F as a function of six complex variables. However, 
geometric complications increase rapidly with the 
number of dimensions. While we do not make here such 
a detailed study of F, we discuss for completeness the 
following aspects of the dependence of F on external 
masses: the transitions between the various cases of 
Sec. 3, and the analytic continuation of F to arguments 
Yij> 1; d. the inequalities (1.6). 

Transitions Between the Various Cases 

These transitions are degenerate in the sense that 
some of the lines Y13=±1, L l3 Ul, and Y24=±1, L 24 (k) 
coincide. We now describe those degenerate cases in 
which lines with singularities coincide, and we assume 
that the inequalities (1.6) hold. We give only the results. 
There are four types of coincidences to be considered. 

(1) <8~2'11", and the sum of two adjacent angles is'll". 
This is the transition between cases (i) and (ii) if 
<8<211". Here, Lla (l)=-1 or L24(1)=-1, and the line 
Yik= -1=Lik (l) has the property that it is not tangent 
to r, and is an asymptote which is approached at both 
- 00 and 00 from the region Yik < -1. 

(2) <8= 2'11", and the sum of any two adjacent angles 
is different from'll". This is the transition between cases 
(ii) and (iii). Here L 2+=L4+ and Ll+=La+. The curve 
r crosses the lines Yla=L2+, Y24=Ll+ at their intersec
tion (Yla,y24) = (L2+,Ll+). The branches r l and r5 are 
connected through the point (L2+,Ll+), and the surface 
~l does not exist. This configuration is illustrated in 
Fig. 11. 

(3) L 2+=L4+=-1 or L l+=La+=-1 (then <8=2'11"). 
Let us assume for definiteness that L 2+=L4+=-1. 
Then r consists of the line Yla= -1 and of a third 
degree curve. If both sets of equations hold then r 
consists of the two lines Yla= -1, Y24= -1, and of a 

21 The analytic dependence of the scattering amplitude on the 
external masses has been used in the formal proofs of dispersion 
relations [Bogoliubov, Medvedev, and Polivanov, lecture notes 
translated at the Institute for Advanced Study, Princeton, New 
Jersey, 1956; and H. J. Bremermann, R. Oehme, and J. G. 
Taylor, Phys. Rev. 109, 2178 (1958)]. The singularities of the 
absorptive part which make these proofs applicable only to 
limited momentum transfers correspond to the singularities of the 
curve r 1 in case of the fourth order perturbation theory. (The 
singularities of r 1 can also be considered as singularities of a mass 
variable.) See references 3 and 8, and Sec. 4. 

FIG. 11.-- The 
curves r) and r5 
when 8=2".. 

1----~-r--~--~~-
L4----~~--~--~~--

~----~~~~~~~--

L+2= L+4 

-1--=~+-++---+--+-lf--

hyperbola. This configuration is analogous to that of 
the equal mass case discussed in II, where we have 
L 2-=L4-= 1, Ll-=La-= l. 

(4) <8=2'11"+2 min(l:Il2,1:I23,l:Ia4,1:I14); this is the transi
tion between cases (iii) and (iv). Here, L13 (2) = L13 (a>, 
L 24(2)=L 24 (a), and r5 shrinks to a point. 

These degenerate cases indicate the continuity that 
is encountered in the transitions between the various 
cases of Sec. 3. The singularities in these degenerate 
cases can be readily determined. Moreover, an exami
nation of these degenerate cases can guide us in 
determining which properties of F can be carried over 
from one case of Sec. 3 to another. 

Continuation of F to Arguments Yij> 1 

If the external masses are considered to be complex 
variables, then the singularities of F are restricted to 
the hypersurfaces given by Yij= ± 1, in addition to those 
given by Eqs. (2.4a-d) and (2.6). We consider now a 
specific pair of indices (i,j). We conclude, as in Sec. 3, 
that F is singular if yij= -1, but if y.;= 1 it does not 
have a singularity of type eWCl) (and associated with 
the boundary Xk=Xl=O, i, j, k, 1 all different). More
over, if Yij~ 1 then a vertex function Fv(Yik) for which 
one of the mass parameters is Yij does not have a type 
(C2) singularity on the boundary of the physical sheet.22 

Now let us consider again the space of two complex 
variables, Yla and Y24. We see from the preceding 
paragraph that for Yij~ 1- ~ (~ positive and sufficiently 
small), the only singularities of F(Y13,y24) with locations 
which vary with Yij are those on the surface ~. We 
obtain the locations of these singular points by analytic 
continuation from Yij= 1- ~ of the expressions defining 
these points. In particular, the representation (4.1) is 
valid for all Yij~ 1- ~ if it is valid for Yij= 1-~. (In one 
exceptional case, where the sum of the three angles 
other than (Jij equals 2'11", we must continue from the 
value Yij= 1+~, and the representation (4.1) is valid 
for all Yij~ 1.) 

22 See I and Appendix A of II. We define the physical sheet of 
Fv(Yik) by -".<arg(Yik-1)<"., in analogy with the definition 
(1.8). 
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D. Behavior of F Near Singularities 

In this appendix we determine the types of singu
larities which F exhibits on the various surfaces.2a We 
show that, given a surface of singularities with the 
equation u=o and a point (Y13o,Y240) lying on this sur
face, F is ordinarily of the form 

F(YI3,Y24) =A (Yla,Y24)+ B(YI3,Y24)f(u), (D.l) 

where the functions A and B are analytic in a neighbor
hood of (Y130,Y240), B is not identically zero, and fez) 
is one of the functions zi, logz, z-i. If the surface u=o 
belongs to one of the degenerate cases of Appendix C, 
or if more than one surface of singularities passes 
through (Y130,Y240), then F is given by a product of 
factors, each of which is such as in the rhs of Eq. 
(D.l); e.g., 

F=A +BI!t(UI)+ B2/2(U2)+ Ba!t (UI)/2 (U2) (D.2) 

[d. Eq. (D.12c)]' We note that Eqs. (D.l) and (D.2) 
establish the existence of singularities of F on the 
various surfaces of singularities described in Sec. 3. 

. We do not attempt to give in this appendix a syste
matic presentation of the subject; we only illustrate 
some useful techniques by means of one example. 
These techniques suffice to establish the forms (D.l) 
or (D.2) for singularities of various integrals, and in 
particular, for all singularities of F. 

We now consider F in a neighborhood of a point 
(YISO,Y240), which lies on the surface of singularities 
Y13=L2+; we assume that (Ylao,Y240) does not lie on any 
other surface of singularities, and that L2+:;= -1,L4+' 
We start with Eq. (1.3) for F, and we eliminate the a 
function by integration over X4. We next consider the 
integral over X3 and its singularities of type (0); 
the result of the integration is of the form 

where we set, see Eq. (1.4) 

D= aaxa2+baxa+ca, Q= ba2-4aaca, (D.4) 

and where <R is a function of Xl, X2, and of the Yij, which 
is regular except for those values of the arguments 
which result in a singularity of the integrand at an 
endpoint of integration. Such values; however, do not 
lead to a singularity at the point (Y130,Y240) specified 
above. 

The term 2aa(logl)/Qi is singular at Q=O if and only 
if 10gl:;=0. To determine 10gl, we have to examine the 
branches of the logarithm. When Q= 0 and the coin-

23 Some results regarding the behavior of Feynman amplitudes 
near singularities have also been given by Eden (footnote 10), 
by L. D. Landau [Nuclear Physics 13, 181 (1959)J, and by 
Mandelstam (footnote 4). 

cident singularities of the integrand lie on the same 
side of the contour, or are separated from the contour, 
then necessarily logl = O. Let us consider now an 
analytic continuation such as shown in Fig. 9(a). At a 
singularity of type (EJ) the argument of the logarithm 
is 0 or 1/0, and analytic continuation around such a 
point leads to a different branch of the logarithm. 
Thus, for coincident singularities of the integrand 
which approach the contour from opposite sides, 
logl = ±2ri, and we have a singularity of the integral. 

The next integration is over X2. Integration of the 
function <R in Eq. (D.3) is complicated, but to deter~ 
mine the singularity of F at (Y130,Y240) we only need to 
consider the term 2aa(logl)/Qf. We obtain 

where we set 

(D.6) 

The singularities in which we are interested come from 
the term in rhs of Eq. (D.S) associated with the 
endpoint X2=0. 

We are left with an integral over Xl. We know from 
Remark 2 of Appendix A that the entire singular part 
of F comes from integrating in a neighborhood of a 
point Xl = X10 (of course, similar conclusions are valid 
for the two previous integrations, over Xa and over X2). 
In a sufficiently small neighborhood of XIO, the factor 
(b22-4a2c2)-1- of Eq. (D.S) is regular; this is implied 
by the type of singularity of F that we are investigating. 
Thus it suffices to consider only the following expression : 

(D.7) 

00 

L an(xI-XIO)n, 
b22-4a2c2 n-() 

The justification of our procedure presents no diffi
culties.ls We may now determine the singularity of the 
expression (D. 7) by considerations analogous to those 
used in the discussion of the integral over X3. 

We list below the expressions for F of the form 
(D.l) which apply to the various singularities (except 
at intersections of surfaces and in the degenerate 
cases). The functions Ai and Bi are analytic functions 
of Yl3 and Y24 at the points under consideration. 

For singularities of type (WCI) we have 

F=A I+BI(Y13+ 1)1, 

F= A 2+ B2(Y24+ l)t. 

(D.9a) 

(D.9b) 
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For singularities of type (BIO) we have 

F=Aa+ Balog(Y13-L;+), 

F=A 4+B4log(Y24-Lk+). 

For singularities of type (0) we have 

(D.10a) 

(D.10b) 

(D.ll) 

We also give the analogous forms for the vertex 
function F.(Y13), where the external mass parameters 
are Yl2 and Y2a. For the singularities of types (BID) 

and (0) we have, respectively, 

F.=A1.+B1v(Yla+ 1)i, 

F.=A 2.+B2• log(Yla-L4+). 

If 012+02a=1I', L4+= -1, then we have 

F.=Aav+B13.(Yla+1)l+B2a.log(Yla+1) 
+ Baa.(Yla+ 1)1 log (Y13+ 1). 

(D.12a) 

(D.12b) 

(D.12c) 

It should be pointed out that the functions A a. and 
Biav in Eq. (D.12c) may have singularities in the Y13 
plane, but the function F. has no singularities other 
than at Yla=-1. 
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